обычный калькулятор функционирует за счет замыкания и размыкания цепи, обозначенных 1 и О
соответственно; на этой основе возможно выполнение самых разнообразных операций, предусмотренных алгеброй Буля.
III.2.
Характерно, что в новейших лингвистиических исследованиях обсуждаются возможности
применения метода бинарных оппозиций при изучении вопроса о возникновении информации в
таких сложных системах, как, например, естественный язык . Знаки (слова) языка состоят из
фонем и их сочетаний, а фонемы—это минимальные единицы звучания, обладающие
www.koob.ru
дифференциальными признаками, это непродолжительные звучания, которые могут совпадать или
не совпадать с буквами или буквой алфавита и которые сами по себе не обладают значением, но, однако,
"bene" и "cena", но разница в произношении не изменит значения слов. Напротив, если, говоря по-
английски, я произношу "i" в словах
"ship" и "sheep" (транскрибированных в словаре соответственно "∫ip"
и "∫i:p") по-разному, налицо оппозиция двух фонем, и действительно, первое слово означает "корабль", второе — "овца". Стало быть, и в этом случае можно говорить об
информации, возникающей за счет бинарных оппозиций.
III.3.
Вернемся, однако, к нашей коммуникативной модели. Речь шла о единицах информации, и мы
установили, что когда, например, известно, какое событие из восьми возможных осуществилось, мы получаем три бита информации.
10 См библиографию в Lepschy, cit, и у Якобсона (Якобсон P. Избранные работы М , 1985) 41
теории информации не представляет интереса, о чем говорится в сообщениях, о числах, человеческих именах, лотерейных билетах или графических знаках. В теории информации зна-
чимо число выборов для однозначного определения события. И важны также альтернативы, которые — на уровне источника — представляются как со-возможные. Информация это не
столько то, что говорится, сколько то, что может быть сказано. Информация —
равновероятных возможностей), отличается от сообщения, содержащего три бита информации
(выбор из восьми равновероятных возможностей), только тем, что во втором случае
просчитывается большее число вариантов. Во втором случае информации больше, потому что
исходная ситуация менее определенна. Приведем простой пример: детективный роман тем более
держит читателя в напряжении и тем неожиданнее развязка, чем шире круг подозреваемых в
убийстве. Информация — это свобода выбора при построении сообщения, и, следовательно, она
представляет собой статистическую характеристику источника сообщения. Иными словами, информация — это число равновероятных возможностей, ее тем больше, чем шире круг, в
котором осуществляется выбор. В самом деле, если в игре задействованы не два, восемь или
шестьдесят четыре варианта, a n миллиардов равновероятных событий, то выражение
I = Lg2l09n
составит неизмеримо большую величину. И тот, кто, имея дело с таким источником, при
получении сообщения осуществляет выбор одной из n миллиардов возможностей, получает
огромное множество битов информации. Ясно, однако, что
собой известное обеднение того несметного количества возможностей выбора, которым
характеризовался
В теории информации, стало быть, берется в расчет равновероятность на уровне источника, и эту
статистическую величину назывют заимствованным из термодинамики термином
11 См Норберт Винер. Кибернетика С. E. Shannon, W. Weaver,
1966; а также работы, указанные к прим. 2 и 4.
42