Читаем Логика. Учебное пособие полностью

Далеко не все можно доказать эмпирически, т. е. с помощью ссылки на опыт. Например, для эмпирического доказательства утверждения о том, что сумма внутренних углов любого треугольника равна 1800, надо начертить треугольник, измерить транспортиром его углы и сложить их величины. Получится 1800. Но ведь этот результат характеризует именно данный, только что начерченный треугольник. Вдруг у другого треугольника сумма внутренних углов не будет равна 1800. Для того чтобы выяснить это, построим другой треугольник, измерим транспортиром его углы и сложим их величины. Опять получится 180º. Однако, может оказаться, что у третьего треугольника сумма внутренних углов будет отличаться от 180º. Начертим третий треугольник и измерим его углы… Таким образом, чтобы доказать эмпирически утверждение об одной и той же сумме внутренних углов любого треугольника, надо построить все возможные треугольники, измерить и сложить величины углов в каждом из них. Сделать это, конечно же, никто не сможет, ведь множество всех треугольников бесконечно. Как видим, в данном случае непосредственное, или эмпирическое доказательство неприменимо.

Каким же образом доказывается положение о сумме внутренних углов любого треугольника? Из курса школьной геометрии всем хорошо известно, что оно выводится не из видимой действительности, или опыта, а из других, ранее доказанных положений (теорем). Такое доказательство является опосредованным. Итак, если в непосредственном доказательстве истинность или ложность какого-либо утверждения устанавливается на основе соотнесения его с действительностью, то в опосредованном доказательстве некое высказывание подтверждается или опровергается с помощью других высказываний, истинность которых установлена ранее и не подлежит сомнению. Понятно, что предметом внимания логики является именно такое доказательство.

<p>5.2. Структура доказательства</p>

Опосредованное доказательство имеет определенную структуру, которая состоит из трех элементов:

1. Тезис – это то, что доказывается (какое-либо суждение, высказывание, утверждение и т. п.).

2. Аргументы, или основания – это то, чем доказывается (какие-либо суждения, высказывания, утверждения и т. п., истинность которых установлена ранее). Как видим, понятия аргументы и основания являются в логике равнозначными, а соответствующие термины представляют собой синонимы.

3. Демонстрация – это то, как доказывается. На первый взгляд наличие этого третьего элемента в структуре доказательства не совсем понятно: есть тезис, и есть аргументы, которые его обосновывают, или из которых он вытекает, – вот, кажется, и все доказательство. Здесь важно вспомнить закон достаточного основания, который требует не просто присутствия аргументов в неком доказательстве, но и говорит о том, что они должны быть достаточными для доказательства тезиса, т. е. обуславливающими его с достоверностью. Как уже отмечалось, часто встречаются ситуации, когда аргументы, или основания наличествуют, но не являются достаточными (Преступление совершил Н., ведь он сам в этом признался). Более того, нередко бывает так, что аргументы, или основания вообще не связаны с тезисом (Ты виноват уж тем, что хочется мне кушать). Поэтому в доказательстве необходимо показать (продемонстрировать) во-первых, связь аргументов с тезисом, а, во-вторых, их достаточность для его подтверждения или опровержения (без этого никакого доказательства нет). Итак, третий и наиболее важный элемент доказательства – это демонстрация, или способ связи аргументов с тезисом.

Рассмотрим все элементы доказательства с помощью примера. В качестве тезиса возьмем высказывание: Шахматы – это полезная игра. Аргументами в данном случае могут быть два суждения:

1. Если что-то развивает мышление, то оно полезно;

2. Шахматы развивают мышление.

Как видим, первый аргумент представлен сложным импликативным суждением, а второй является простым, или категорическим суждением. Если расположить эти аргументы друг под другом, то получится классическая форма условно-категорического силлогизма утверждающего модуса:

Если что-то развивает мышление, то оно полезно.

Шахматы развивают мышление.

Шахматы полезны

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия