Таковы общие правила простого силлогизма. Теперь перечислим частные правила, или правила фигур силлогизма.
Для первой фигуры: большая посылка должна быть общей, меньшая – утвердительной.
Для второй фигуры: большая посылка должна быть общей, одна из посылок и вывод должны быть отрицательными.
Для третьей фигуры: меньшая посылка должна быть утвердительной, а вывод – частным.
Для четвертой фигуры: если большая посылка утвердительная, то меньшая посылка должна быть общей; если одна из посылок отрицательная, то большая должна быть общей.
Еще раз отметим, что для получения истинного вывода в простом силлогизме недостаточно только того, чтобы его посылки были истинными суждениями, кроме этого требуется соблюдение общих и частных правил силлогизма.
3.6. Энтимемы и эпихейремы
Поскольку простой силлогизм – это одна из широко распространенных разновидностей умозаключения, он часто используется в повседневном и научном мышлении.
Однако, при его употреблении, мы, как правило, не соблюдаем его жесткую логическую структуру (в которой отчетливо прослеживаются две посылки и вытекающий из них вывод).
Например, вместо того, чтобы сказать:
мы, скорее всего, скажем:
Таким образом, в мышлении и речи обычно используется не простой силлогизм, а его различные сокращенные разновидности, которые и будут рассмотрены в этом и следующем параграфах.
Энтимема – это простой силлогизм, в котором пропущена одна из посылок или вывод. Понятно, что из любого силлогизма можно вывести три энтимемы. Например, из силлогизма:
следуют три энтимемы.
1.
2.
3.
Эпихейрема – это простой силлогизм, в котором обе посылки являются энтимемами. Возьмем, два силлогизма и выведем из них энтимемы.
1 силлогизм
Пропуская в этом силлогизме большую посылку, получаем
энтимему:
2 силлогизм
Пропуская в этом силлогизме большую посылку, получаем энтимему:
Если расположить эти две энтимемы друг за другом, то они станут посылками нового, третьего силлогизма, который и будет эпихейремой:
Как видим, в составе эпихейремы можно выделить три силлогизма: два из них являются посылочными, а один строится из выводов посылочных силлогизмов. Этот последний силлогизм представляет собой основу для окончательного вывода.
3.7. Полисиллогизмы и сориты