Решение. Как показано в предыдущем пункте, все мудрецы поймут, что спрятан колпак того же цвета, что и колпак, надетый на последнего мудреца. А поскольку цвета остальных колпаков им известны (либо видны, либо верно названы другими мудрецами), то все по очереди верно назовут цвета своих колпаков.
4) Один из мудрецов верно ответил на вопрос. Обязательно ли остальные после этого тоже смогут определить цвета своих колпаков?
Решение. Нет. Пусть, например, на мудрецов надеты красный, желтый, красный, зеленый, зеленый колпаки. Тогда пятый мудрец не сможет понять, зеленый или желтый колпак на нем, и скажет «Не знаю». Четвертый после этого поймет, что на нем не желтый колпак. Но и не красный, поскольку два красных он видит. Поэтому четвертый скажет «Зеленый». Но для третьего желтый и красный цвета останутся равноправны.
5) Докажите, что не менее трех мудрецов правильно определят цвет своего колпака.
Решение. Все мудрецы знают, что хотя бы один из них в желтом колпаке. Если последний мудрец не видит перед собой желтого колпака, то он скажет: «На мне желтый колпак». Если он назвал другой цвет или не смог определить цвет своего колпака, то он видит перед собой хотя бы одного мудреца в желтом колпаке. Тогда если предпоследний мудрец не видит перед собой желтого колпака, то он скажет: «На мне желтый колпак». Аналогичные рассуждения верны и для следующих мудрецов. Поэтому рано или поздно кто-то скажет, что желтый колпак на нем. Точно так же доказывается, что каждый из трех цветов будет назван хотя бы одним мудрецом.
6) Придумайте ситуацию, в которой верно ответить на вопрос смогут четыре из пяти мудрецов.
Решение. Например, колпаки надеты в таком порядке: желтый, желтый, красный, зеленый, зеленый (а второй красный спрятан). Пятый мудрец не может отличить, красный на нем колпак или зеленый, и ответит «Не знаю». Четвертый видит перед собой два желтых колпака и понимает, что на нем не желтый. А еще он видит красный колпак третьего мудреца и понимает, что если бы на нем тоже был красный колпак, то пятый бы без труда определил цвет своего зеленого колпака. Итак, четвертый понимает, что на нем зеленый колпак, и сообщает об этом.
Третий понимает, что если бы на нем тоже был зеленый колпак, то пятый бы определил цвет своего красного колпака. Третий также видит желтые колпаки первых двух и делает вывод, что на нем красный колпак.
Второй думает: «Если на мне красный колпак, то третий видит перед собой желтый и красный колпаки, а слышал до этого ответы „Не знаю“ и „Зеленый“. Как же третий мог различить, желтый или красный на нем колпак? А если на мне зеленый, то четвертый видел перед собой три разных колпака и слышал от пятого „Не знаю“. Как же он определил цвет своего колпака?» Итак, второй методом исключения тоже поймет, что на нем желтый колпак.
Первый думает: «Пусть на мне красный колпак. Тогда третий видел перед собой желтый и красный колпаки, а слышал до этого ответы „Не знаю“ и „Зеленый“. В таком случае желтый и красный цвета с точки зрения третьего равноправны. Как же он сделал выбор? Значит, на мне не красный колпак. Пусть на мне зеленый колпак. Тогда четвертый видел перед собой три колпака разных цветов, а слышал только ответ „Не знаю“. Как же он мог сделать выбор? Значит, на мне и не зеленый колпак. Остается желтый».
Упрощенный вариант
Сценарий. Обсуждается та же задача 10.13. Учитель приглашает пятерых «мудрецов», просит их закрыть глаза и надевает им пять колпаков, а шестой прячет. Затем мудрецы открывают глаза и, начиная с последнего, либо называют цвет своего колпака, либо говорят «Не знаю». Все ошибки предлагается исправлять на месте с помощью зрителей или учителя. Например, если «мудрец» должен был сказать «Не знаю», но вместо этого случайно верно назвал цвет своего колпака, можно достать спрятанный колпак и сказать: «Но ведь могло быть и так!», после чего «отрубить голову». А если «мудрец» мог бы догадаться, но говорит «Не знаю», подсказать примерно так: «Представь, что на тебе желтый колпак. Что бы тогда видел стоящий за тобой? И что бы он сказал? Почему же он сказал „Не знаю“? Так какой же на тебе колпак?» Если какая-то ситуация пошла с трудом, можно повторить ее, поменяв, например, все желтые колпаки на красные, а красные – на желтые.
Колпаки на мудрецах такие:
1) Красный, красный, желтый, желтый, зеленый (а второй зеленый спрятан).
Ответ. Определить цвет своего колпака могут все.
2) Желтый, зеленый, желтый, зеленый, красный.
Ответ. Определить цвет своего колпака могут все.
3) Красный, желтый, желтый, красный, зеленый.
Ответ. Определить цвет своего колпака могут все.
4) Желтый, красный, зеленый, желтый, красный.
Ответ. Два последних скажут «Не знаю», а три первых назовут цвет.
5) Зеленый, желтый, красный, красный, зеленый.
Ответ. Два последних скажут «Не знаю», а три первых назовут цвет.
6) Желтый, желтый, красный, зеленый, зеленый.
Ответ. Последний скажет «Не знаю», а остальные назовут свой цвет.
7) Красный, желтый, красный, зеленый, зеленый.