§ 12. Напротив, в тех случаях, когда математическое обобщение не идёт дальше неполной индукции, оно всегда может быть, так же как и любой вывод неполной индукции, опровергнуто первым фактом, противоречащим обобщению. Тот же Ферма высказал — на основе индукции — предположение, будто все числа вида (2^2^n)+1 суть простые числа, т. е. числа, которые делятся только на самих себя и на единицу. При этом он опирался на последовательный ряд из четырёх случаев, или примеров, которые все давали результат, обобщённый Ферма в его формуле. И действительно: 22+1 = 5; 24+1 = 17; 28+1 = 257; 216+1 = 65 537, т. е. все рассмотренные и образующие последовательный ряд четыре случая дают в результате простые числа и, стало быть, подтверждают формулу. Но как только Эйлер вычислил результат для следующего, пятого, случая (232+1) и показал, что это число — 4 294 967 297 — делится на 641, предположение Ферма, найденное путём неполной индукции, оказалось опровергнутым, так как был обнаружен случай, противоречащий обобщению.
§ 13. Но и дедуктивные исследования не могут обойтись без индукции. Индукция не только ведёт к первоначальным догадкам относительно общих правил и законов, которые впоследствии обосновываются путём дедукции. Индукция ведёт к образованию тех
И всё же, как бы значительно ни отличались понятия и определения математики от реальных предметов и отношений этих предметов в действительном мире, понятия и определения эти возникли некогда на основе опыта и выведенных из опыта обобщений. Конечно, понятие геометра о прямой не есть только понятие о пределе, к которому стремится начерченная на бумаге тушью прямая по мере того, как её ширина и высота становятся в руках искусного чертёжника всё меньшими и меньшими. Между самой «тонкой» и «низкой» прямой, проведённой на чертеже, и прямой, мыслимой геометром, т. е. имеющей
Но если бы геометр не опирался на многочисленные наблюдения, которые показывают, что можно, не изменяя длины начерченной линии, изменять, а именно уменьшать, её толщину и высоту, если бы, кроме того, ему не приходилось задаваться относительно линии рядом вопросов, для решения которых не имеет значения ни высота, ни ширина её, но единственно только её длина, то никогда геометр не оказался бы в состоянии образовать в своём уме и при помощи своего воображения понятие о прямой как о линии, имеющей одну только длину. Индукция не может без помощи дедукции доказать ни одного положения в качестве положения безусловно
§ 14. Взаимная связь индукции и дедукции отчётливо выступает в сложных научных исследованиях. Исследования эти редко начинаются с точной формулировки закона. Обычно точной формулировке общего закона предшествует приблизительная, часто грубая и весьма неточная проба такой формулировки, основывающаяся на весьма ещё несовершенных индукциях, или выводах из частных случаев. Но и на этой стадии большую роль играют предвосхищение общей формулы и дедуктивные выводы из неё, которые указывают путь дальнейшему исследованию. Принимая свои приблизительные обобщения в качестве истины, исследователь извлекает путём
До Галилея, например, физики, заметив, что вода поднимается в насосе, объясняли это явление тем, что природа якобы боится пустоты: по мере того как воздух выкачивается насосом, на место воздуха становится вода.