Читаем ЛОГИКА полностью

§ 9. До сих пор, говоря об отсутствии безусловной противоположности между дедукцией и индукцией, мы опирались на те формы индукции, которые по ходу умозаключения, по степени его вероятности и по его задаче должны быть, как полная индукция, поставлены рядом с силлогистическими, или дедуктивными, выводами.

Но то же отсутствие безусловной противоположности между дедукцией и индукцией может быть доказано и иначе — посредством анализа тех форм индуктивных выводов, которые, как индукция Бэкона, несомненно, отличаются от силлогистических выводов и по степени вероятности заключений, никогда не достигающей полной достоверности, и по их цели, состоящей в установлении причинной связи.

И действительно, общую схему всех бэконовских индуктивных методов составляет, как мы видели, разделительно-категорический силлогизм модуса tollendo ponens.

Независимо от особого для каждого метода хода умозаключения каждый метод бэконовской индукции состоит — с логической точки зрения — в том, что, учтя всю совокупность несовместимых друг с другом обстоятельств, относительно которых возможно думать, что каждое из них может быть причиной исследуемого явления, последовательно исключают все те из них, которые, как выясняется из анализа, не могут быть такой причиной в данном случае. В результате не исключённым оказывается только одно единственное обстоятельство, которое и есть причина (или часть причины) явления. В случае метода сходства неисключённым остаётся то обстоятельство, которое одно имеет место во всех рассматриваемых случаях, в то время как все остальные обстоятельства оказываются в каждом случае различными. При методе различия неисключённым остаётся то обстоятельство, которым данный случай отличается от всех других случаев, когда явление наступает. При методе остатков неисключённым остаётся то обстоятельство, которое не может быть причиной ни одной составной части сложного явления, кроме той именно, причина которой должна быть установлена. Наконец, в случае метода сопутствующих изменений неисключённым остаётся то обстоятельство, которое одно изменяется в степени, в то время как все остальные во всех исследуемых случаях оказываются не изменёнными.

Итак, при всём несомненном различии, какое существует между дедукцией и индукцией, различие это отнюдь не есть безусловная противоположность исключающих друг друга видов умозаключения.

§ 10. Но этого мало. Отсутствие безусловной противоположности между дедукцией и индукцией состоит не только в том, что в ряде дедуктивных и индуктивных выводов ход умозаключения при кажущемся различии оказывается по существу один и тот же. Отсутствие безусловной противоположности между дедукцией и индукцией сказывается, кроме того, ещё и в том, что, даже будучи различными, индукция и дедукция восполняют друг друга и предполагают друг друга во множестве видов научных исследований.

Обычно научное исследование есть сложная задача, решение которой может быть достигнуто только совместным применением дедукции и индукции. Даже при выводах, которые кажутся часто индуктивными, мышление всегда опирается также и на дедукцию. Так, чтобы приступить к исследованию причины явления по одному из методов бэконовекой индукции, необходимо предположить, что данное явление есть частный случай или частное проявление всеобщего закона причинной связи. Но это суждение есть заключение дедуктивного — силлогистического — вывода.

§ 11. Даже в тех случаях, когда индуктивный вывод предшествует дедуктивному доказательству, окончательная достоверность вывода достигается не индукцией, а дедукцией. Из истории наук известно, что даже в доказательствах математических теорем применялась индукция. Некоторые и притом весьма важные теоремы теории чисел, например малая теорема Ферма1, были сначала найдены посредством индукции. Путём индукции была найдена Архимедом площадь параболы: Архимед брал листы жести одной и той же толщины, вырезал из них куски параболической формы и затем взвешивал их. И только после того, как посредством индукции была найдена формула для площади параболы, оказалось возможным вывести эту же формулу дедуктивным путём.

Однако значение всеобщих истин эти теоремы приобрели не на основе первоначальных индукций, при помощи которых они были найдены, а на основе дедуктивного доказательства. Только оно оказалось способным поднять эти положения со ступени вероятных или справедливых лишь для некоторых случаев положений на ступень истин, вполне достоверных и строго доказанных.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия