Читаем Льюис Кэрролл: Досуги математические и не только полностью

Собирая десятки, помнить, что если один из членов пары равен 1 или если сумма двух членов меньше 7, то разряд десятков отсутствует; если один [из членов пары] равен 5, то разряд десятков равен количеству двоек, содержащихся в другом; если один [из них] есть 9, то разряд десятков равен другому минус 1.

Во многих случаях такие задачи на умножение длинных чисел требуют суммирования только двух строк [под чертой]; когда же появляется набор произведений, чья сумма содержит три цифры, возникает нужда в третьей строке; когда сумма набора произведений содержит четыре цифры — то в четвёртой, но такое возникает только в том случае, когда меньшее из чисел содержит по меньшей мере тринадцать цифр; а когда сумма произведений содержит пять цифр — нужен пятый ряд, но такое происходит, лишь если меньшее число содержит по крайней мере сто двадцать четыре цифры, а потому превышает триллион секстиллионов!

Данный способ легко приложим и к перемножению десятичных дробей; нужно лишь для начала поместить полоску бумаги так, чтобы метка пришлась строго по вертикали над тем разрядом десятичных, на который требуется перенести действие. Я приведу здесь два примера, выделив из хода решения каждого, во-первых, сам пример в его исходной записи; во-вторых, стадию прямо перед тем, как полоска будет смещена первый раз; в-третьих, конечное состояние — перед тем как полоска будет убрана; и в-четвёртых, итог складывания.

Следовательно, ответ в первом примере будет 0,0080 с точностью до четвёртого знака; во втором примере ответ, с точностью до второго знака, будет 16211446,27.

Глава 2. ДЕЛЕНИЕ ДЛИННЫХ ЧИСЕЛ, КОГДА ИСКОМЫМ ЯВЛЯЮТСЯ КАК ЧАСТНОЕ, ТАК И ОСТАТОК

§1. Делитель вида (10n ± 1) [3]

Год назад я обнаружил один любопытный [4] факт: если поставить «0» над разрядом единиц некоторого данного числа, которому случится быть кратным 9, и вычесть во всю длину, всякий раз ставя разность над следующей цифрой, то конечное вычитание даст 0 в остатке, а верхний ряд, по отбрасывании его конечного нуля, оказывается «частным-9» данного числа (то есть, частным от деления данного числа на 9).

Обнаружив этот факт, я тот час пришёл, по аналогии, к открытию того, что если поставить 0 под разрядом единиц некоторого данного числа, которому случится быть кратным 11, и действовать подобным образом, мы придём к подобному же результату.

В каждом случае я получал частное от деления столбиком более коротким и простым способом вычитания; но поскольку к этому результату можно было придти лишь в том (сравнительно редком) случае, когда данное число оказывалось точным кратным 9 или 11, это открытие виделось более любопытным, чем полезным.

Позднее я стал рассматривать случаи, когда данное число не было точным кратным. Я нашёл, что конечное вычитание при этом приносило некоторое число, иногда сразу являвшееся действительным остатком, получаемым от деления, но в любом случае дающее заготовку для нахождения такого остатка. Но поскольку оно не приносило частного (кроме как посредством некоторой весьма «экстравагантной» процедуры, значительно более длинной и трудоёмкой, чем подлинное деление), это открытие также не подлежало практическому применению.

Но совсем недавно мне пришло на ум выяснить, что будет, если после нахождения остатка поместить этот последний вместо того нуля над или под разрядом единиц, а затем вычесть как ранее. Меня поразило открытие того факта, что прежний результат повторился: конечное вычитание принесло 0 в остатке, а новая строка, по отбрасывании её разряда единиц, оказалась требуемым частным.

Существует, далее, более короткая процедура получения «остатка-9» и «остатка-11» некоторого данного числа, чем моё правило вычитания (процедура нахождения «остатка-11» есть ещё одно моё открытие). Усвоив её, я 28 сентября 1897 года довёл моё правило до завершения (я записал точную дату, поскольку это так приятно — быть открывателем новой и, как я надеюсь, практически полезной истины).

(1) Правило нахождения частного и остатка от деления данного числа на 9.

Чтобы найти «остаток-9», суммируем цифры; затем суммируем цифры результата и так далее, пока не останется единственная цифра. Если она будет меньше 9, это и будет искомый остаток; если это будет 9, искомый остаток равен нулю.

Чтобы найти «частное-9», проводим черту под нашим числом и ставим его «остаток-9» под разрядом единиц; затем вычитаем верхнее из нижнего, ставя разность под следующей цифрой, и так далее. Если крайняя левая цифра нашего числа меньше, чем 9, при её вычитании мы должны получить в остатке 0; если же она равна 9, мы должны получить в остатке 1, поставить в нижнюю строку да вычесть 1 заимствованное, что даёт в остатке 0. Теперь отчеркнём наш «остаток-9» на правом конце нижней строки, и оставшееся в ней будет «частным-9».

Примеры.

Перейти на страницу:

Похожие книги

Заразные годы
Заразные годы

«Заразные годы» — новая книга избранных писем счастья Дмитрия Быкова за разные годы. Мало кто помнит, что жанр злободневной поэтической колонки начался еще в огоньковский период автора. С тех пор прошло уже больше 20 лет: письма счастья перекочевали в «Новую газету» и стали ассоциироваться только с ней. За эти годы жанр не надоел ни автору, ни читателям — что еще нужно, чтобы подтвердить знак качества?В книгу «Заразные годы» войдут колонки последних лет и уже признанные шедевры: троянский конь украинской истории, приезд Трампа в Москву, вечный русский тандем, а также колонки, которые многие не читали совсем или читали когда-то очень давно и успели забыть — к ним будет дан краткий исторический комментарий.Читая письма счастья, вспоминаешь недавнюю и самую новую историю России, творившуюся на наших глазах и даже с нашим участием.

Дмитрий Львович Быков

Юмористические стихи, басни
Мои эстрадости
Мои эстрадости

«Меня когда-то спросили: "Чем характеризуется успех эстрадного концерта и филармонического, и в чем их различие?" Я ответил: "Успех филармонического – когда в зале мёртвая тишина, она же – является провалом эстрадного". Эстрада требует реакции зрителей, смеха, аплодисментов. Нет, зал может быть заполнен и тишиной, но она, эта тишина, должна быть кричащей. Артист эстрады, в отличие от артистов театра и кино, должен уметь общаться с залом и обладать талантом импровизации, он обязан с первой же минуты "взять" зал и "держать" его до конца выступления.Истинная Эстрада обязана удивлять: парадоксальным мышлением, концентрированным сюжетом, острой репризой, неожиданным финалом. Когда я впервые попал на семинар эстрадных драматургов, мне, молодому, голубоглазому и наивному, втолковывали: "Вас с детства учат: сойдя с тротуара, посмотри налево, а дойдя до середины улицы – направо. Вы так и делаете, ступая на мостовую, смотрите налево, а вас вдруг сбивает машина справа, – это и есть закон эстрады: неожиданность!" Очень образное и точное объяснение! Через несколько лет уже я сам, проводя семинары, когда хотел кого-то похвалить, говорил: "У него мозги набекрень!" Это значило, что он видит Мир по-своему, оригинально, не как все…»

Александр Семёнович Каневский

Юмористические стихи, басни / Юмор / Юмористические стихи