Исследования Е. Федорова показывают, что, во-первых, образование различных организационных форм подчиняется некоторым общим законам, управляющим нашим миром, переступать которые никому не дано; во-вторых, приводят к выводу о необходимости специального исследования проблем организации материи, примером которой являются формы кристаллов. И первый из таких общих законов, которым подчиняются любые системы, — это закон, названный «принципом устойчивости». Речь идет о таких состояниях равновесия систем, которые не могут разрушиться малыми внешними возмущениями. Этот принцип студенты иногда в шутку называют «принципом карандаша» или «принципом Колумба», имея в виду легенду, согласно которой великий путешественник умел ставить яйцо вертикально на острую вершину, не разбивая его. Конечно, теоретически яйцо, так же как и карандаш, можно поставить на острие, такое положение равновесия существует и не противоречит законам физики. Но долго на острие, скажем, карандаш стоять не будет. Все дело в принципиальной стохастичности мира, в котором мы живем и где любая система, любое тело, любой объект непрерывно испытывают случайные, непредсказуемые возмущения. Если бы нам и удалось поставить карандаш на его острие, то в следующий момент какое-либо случайное возмущение, например колебание воздуха или незаметная для глаза вибрация подставки, отклонит его от вертикального положения и он упадет под действием силы тяжести. Так что наблюдать мы можем лишь те положения равновесия, о которых можно сказать, что «дальше падать некуда!».
В свете сказанного открытие Е. Федорова означает, что нам известны все устойчивые кристаллические формы организации материи. И чтобы разрушить ту или иную кристаллическую решетку, надо приложить значительные усилия.
Теория организации начала оформляться с того момента, когда ученые увидели, как важно для понимания природы изучаемых процессов уметь выделять устойчивые, долговременно существующие характеристики, которые и являются основными фрагментами организации. И вот почему академика Е. Федорова мы с полным правом можем называть «отцом теории организации».
Знание состояний равновесия системы и тех свойств, которыми обладают эти состояния, может оказать неоценимую помощь при решении многочисленных задач практического характера. Например, тот же процесс кристаллизации показывает, что окончательным предельным состоянием, в котором в конце концов оказывается кристаллизирующееся вещество, то есть форма его кристалла, и будет его устойчивым положением равновесия. И благодаря исследованиям Е. Федорова мы это состояние можем знать заранее.
Естественные науки, и прежде всего физика, создали хорошую методическую базу для изучения структур, определяющих развитие тех или иных процессов механических, технологических, биологических… Знание основ этого метода может оказаться очень полезным и для решения гораздо более трудных проблем общественной природы.
Мы живем в непрестанно меняющемся мире, где те организационные формы, которые были устойчивыми при одних условиях, становятся неустойчивыми при их изменении; происходит перестройка структуры системы.
Такую перестройку можно сравнить с изменением характера горной реки, когда она, вырвавшись из скалистой теснины на равнину, разливается и из мощного и бурного потока, который пробивал себе путь в скалах, превращается в реку, спокойно несущую дальше свои воды.
С проблемой перестройки предельных состояний связана специальная научная дисциплина «Теория катастроф».
Сейчас ей посвящено много солидных исследований и литературных работ. Занимается она изучением явлений, связанных с качественной перестройкой структуры, или организации процесса. Так как эту проблему долго разрабатывали преимущественно физики, которые исследовали много интересных явлений, связанных с возникновением новых структур, то приведем еще один пример из физики, который поможет нам более отчетливо увидеть некоторые особенности, связанные с изменением структуры системы в процессе ее функционирования. Пример, который мы сейчас рассмотрим, был изучен еще Л. Эйлером более двухсот лет назад и оказался, вероятно, толчком для создания современной теории катастроф.
Предположим, что у нас есть круглая вертикальная колонна (см. рис.), на которую давит сверху некоторая сила (груз). Если эта сила мала, то с колонной ничего не произойдет: она будет находиться в вертикальном положении равновесия. Предположим теперь, что на колонну мы подействовали некоторой горизонтальной силой, например ударили по ней кувалдой. Что с нею произойдет под действием этого удара?
Колонна как-то изогнется и начнет колебаться около своего положения равновесия. В силу естественного демпфирования (например, трения о воздух) эти колебания будут постепенно затухать, а колонна возвращаться к своему исходному положению равновесия.
Но так будет происходить только в том случае, если вертикальная нагрузка достаточно мала. А что произойдет, если эта нагрузка станет увеличиваться?