Читаем Линейный корабль полностью

Нельзя было защищать корабль и сверху такой броней. Ведь площадь палубы линейного корабля очень велика, еще много тысяч тонн легло бы своей тяжестью на его корпус, перегрузило бы его. Кроме того, и не нужно было защищать палубу очень толстой броней: снаряды всегда попадали в палубу под острым углом, поэтому сила их удара была меньше, чем при попадании в борт (о причине этого явления речь будет впереди). А самолеты-бомбардировщики тогда еще де завоевали себе признания. Вот почему палуба линейного корабля защищалась более тонкой броней.

Обычно бронировали не одну палубу, а две: верхнюю более тонкой броней, а нижнюю более толстой. Общая их толщина не превышала 90-125 миллиметров. Когда снаряд попадал в верхнюю палубу, он пробивал ее и при этом разрывался на тысячи осколков. Эти осколки уже не обладали такой силой, чтобы пробить нижнюю броню.

Но время шло. Увеличивались калибры главных орудий, их дальнобойность, скорость полета их снарядов и, следовательно, сила их ударов. А самолеты-бомбардировщики превратились в подлинную грозу боевых кораблей.

Пришлось кораблестроителям снова усиливать пассивную защиту корабля – его броню, палубную и бортовую. Но как это сделать? Можно было бы изготовить для линейных кораблей еще более толстые броневые пояса и палубные настилы. Но по этому пути нельзя было идти далеко: ведь каждое утолщение брони – это сотни и даже тысячи тонн новой тяжести, нагруженной на корабль. Если бы кораблестроители шли только по этому пути, пришлось бы отказаться от части вооружения, корабль оказался бы слабым, тихоходным. Значит, надо было не только утолщать броню, но и, повышая качество ее, улучшать устройство – целесообразнее, экономичнее распределять ее. Тогда -уже после первой мировой войны – и придумали одно простое улучшение устройства брони. В чем оно заключалось?

Представим себе, что снаряд попал в броню корабля, бортовую или палубную, с близкого расстояния. Снаряд должен был пробить броню, но все же отскочил и упал в воду. Почему? Может быть, броня слишком толста или изготовлена из особенно прочной стали?

Нет, броня оказалась обычной толщины и качества. Может быть, что-нибудь случилось с пушкой или зарядом? Нет, и здесь все в порядке. В чем же причина неудачного попадания?

Оказалось, что снаряд «плохо» попал в броню, не прямо, а очень косо, поэтому броня и осталась непробитой.

Выходит, что в момент попадания пробивная сила снаряда может меняться.

Предположим, что в момент удара о броню нам удалось сфотографировать броню и; снаряд. На фото получилось, что снаряд как бы чуть- чуть вонзился в броню. Полная пробивная сила удара получится, если снаряд «вонзится» и «станет» на броне прямо, как фигура на шахматной доске.

В этом случае угол между осью снаряда и поверхностью брони будет равен 90°. Если же снаряд «вонзится» слегка наклонно, угол этот уменьшится, но тогда уменьшится и пробивная сила удара. Чем более наклонно будет попадать снаряд, тем меньше будет и пробивная сила удара. Наконец, может случиться и так, что снаряд попадет в броню совсем наклонно, под углом 30° или даже еще меньше. Тогда огромный снаряд, ударивший по броне о невероятной силой, просто скользнет по ее поверхности и упадет-в море. Так и произошло в том случае, о котором рассказано выше.

Угол, под которым снаряд попадает в броню, называется «углом встречи» снаряда с броней. Малый угол встречи и является причиной слабого удара снаряда по броне. Величина угла встречи всегда играла важную роль в расчетах кораблестроителей, когда они проектировали броневую защиту большого боевого корабля.

Когда понадобилось усилить сопротивление брони не только путем ее утолщения, что вызывало увеличение ее веса, кораблестроители решили искусственно уменьшить угол встречи снаряда с броней, сделать его более острым. Они наклонили бортовую броню наружу, как бы отвалили борт сверху к воде. Теперь снаряд должен был попадать в броню настолько косо, что сила его удара уменьшалась.

Кораблестроители сделали очень интересный расчет. Оказалось, что броня, наклоненная на 10°, сопротивляется удару снаряда так, как будто ее толщина увеличилась на 10 процентов, на одну десятую часть своей величины. Поэтому и не пришлось особенно увеличивать толщину бортовой брони. Так, например, броня толщиной всего 370 миллиметров могла служить так же, как броня толщиной примерно 406 миллиметров. Значит, если линейный корабль был вооружен орудиями калибром 406 миллиметров и мог ожидать встречи с таким же противником, для него была достаточной броня толщиной 370 миллиметров. Так могло быть соблюдено правило равенства между калибром главной артиллерии и толщиной брони.

Все же в наши дни толщина наклонной поясной брони новейших линейных кораблей у наиболее жизненных частей выросла до 406 миллиметров, а это значит, что она сопротивляется ударам, как броня толщиной 446 миллиметров.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки