Химики-полимерщики давно заметили, что кривая молекулярно-массового распределения очень напоминает хорошо известное математикам распределение случайной величины, чаще называемое гауссовым распределением – по имени создателя этой зависимости. Она описывает многие группы предметов, которые в основной массе имеют среднее значение и, кроме того, содержат некоторые отклонения в обе стороны. Например, рост людей или их вес, время жизни живых организмов, срок службы серийно изготавливаемого оборудования (автомобилей, лампочек, электромоторов), а также рассеяние точек попадания при выстрелах из огнестрельного оружия, скорость молекул в газе и многое другое. Во время выборной кампании анализ такой зависимости по результатам, полученным с различных избирательных участков, позволяет оценить корректность процедуры голосования. Фундаментальное и буквально «всеохватывающее» значение этой зависимости было отмечено особым образом: внешний вид кривой и портрет ее создателя – К. Ф. Гаусса – в свое время были изображены на немецкой денежной купюре достоинством в десять марок (рис. 1.51).
Гауссова кривая имеет те же основные параметры, что и молекулярно-массовое распределение, среднее значение (строгое название – математическое ожидание
Естественно, в полимерной химии стали оценивать полидисперсность точно таким же образом – вместо того чтобы проводить измерения средней молекулярной массы двумя различными методами. Однако традиция сохранилась, и эту величину, найденную измерениями на графике, по-прежнему обозначают Mw/Mn, хотя все понимают, что никто не измеряет отдельно Mw и Mn и полидисперсность получают из параметров графика.
Возьмем линейный кремнийорганический полимер (рис. 1.53), у которого на одном конце каждой макромолекулы имеется реакционноспособная группа – ONa.
Допустим, что состав полимера описывается кривой молекулярно-массового распределения, у которой Mсредн. = 20 000 и полидисперсность Mw/Mn = 2 (берем традиционное обозначение этой величины). Далее на его основе мы получим разветвленный полимер. В качестве разветвляющего центра возьмем тетрахлорид кремния SiCl4, который будет реагировать с концевыми группами по схеме, показанной на рис. 1.54 (волнистая линия означает фрагмент полимерной цепи).
Если от одного центра отходит несколько полимерных ветвей, такие полимеры называют звездообразными. Для дальнейших рассуждений заменим химические символы условными обозначениями: разветвляющий центр обозначим точкой, а отходящие от него полимерные ветви – волнистыми линиями. В результате молекула звездообразного полимера будет выглядеть так, как показано на рис. 1.55. Естественно, что отходящие от центра ветви имеют различную длину, поскольку исходный полимер – полидисперсный.
Какова ожидаемая средняя молекулярная масса такого полимера? Можем предположить, что она в четыре раза больше, чем у исходного полимера, – то есть 80 000. Кроме того, исходя из здравого смысла, мы можем предположить, что к разветвляющему центру в момент реагирования будут подходить молекулы разной длины (как показано на рис. 1.55), а образование звездообразных молекул, содержащих только короткие (рис. 1.56, слева) или только длинные ветви (рис. 1.56, справа), очень маловероятно.
Из этого следует, что разветвляющий центр, объединяя преимущественно молекулы разной длины, как бы усредняет всю систему, делая полимер более однородным. Иначе говоря, в полимере возникнет меньший разброс по величине молекулярных масс, то есть более низкая полидисперсность. Таким образом, у полученного разветвленного полимера величина Mw/Mn будет существенно ниже, чем у исходного линейного полимера.
Правильны ли наши рассуждения? Что касается ожидаемой средней молекулярной массы, то они правильны, но рассуждения относительно полидисперсности абсолютно не верны. Как установить, что они ошибочны? Перейдем от обычных логических рассуждений к научным методам. Теория вероятностей, предметом которой являются и гауссовы распределения, указывает (и это доказано на уровне теорем), что молекулярная масса должна возрасти в четыре раза (здесь мы не ошиблись), но и полидисперсность тоже должна возрасти в четыре раза. Такой совершенно неожиданный вывод известен далеко не всем химикам-полимерщикам. Почему же теория так резко расходится со здравым смыслом? Может, она не верна? Нет, она верна, и это подтверждают эксперименты по синтезу подобных полимеров.
Окончательный вывод будет таким: логические рассуждения при оценке событий, описываемых теорией вероятностей, довольно часто приводят к ошибочным выводам, и в таких случаях правильнее опираться на математику, а не на рассуждения. Впрочем, логические ошибки возможны и во многих других случаях. Пример типичной логически ошибочной конструкции: "Все школьники носят рюкзаки. Моя бабушка носит рюкзак. Следовательно, моя бабушка – школьница".