Космические зонды, такие как Cosmic Background Explorer, Wilkinson Microwave Anisotropy Probe и Planck Satellite в конечном итоге подтвердили эти подозрения, открыв, что РКИ характеризуется крошечными флуктуациями. Тем не менее такие маленькие отклонения вовсе не убрали проблему горизонта, поскольку температурная однородность в большом масштабе никуда не делась.
Уилер надеялся решить вопрос с помощью квантового толкования геометродинамики. Как он указывал на «Природе времени», вероятно, законченная теория квантовой гравитации сможет объяснить, почему энтропия в первоначальном космосе была столь низкой. Возможно, достаточно низкая энтропия соотносилась с однородным ранним космосом – примерно так же как низкая энтропия (высокий уровень порядка) промерзшего до дна пруда делает его поверхность гладкой.
Тем временем Мизнер предложил свое объяснение, названное «вселенной Миксмастера». Он основал свою модель, представленную в 1969-м, на анизотропном решении уравнений Эйнштейна, которое колеблется в различных направлениях вместо равномерного расширения. Его размышления частично подстегнула гипотеза британского космолога Стивена Хокинга о том, что вселенная могла начаться в виде сингулярности (состояния бесконечной плотности), и обогатили результаты русских физиков Владимира Белинского, Исаака Халатникова и Евгения Лифшица, показавших, как космос мог появиться из такой сингулярности в хаотическом состоянии. Уилер предупредил Мизнера о находках русских, когда тот сам глубоко погряз в собственных расчетах.
Мизнер назвал эту модель «Миксмастер» по имени популярного кухонного миксера того времени. Он надеялся, что она поможет объяснить, почему излучение вселенной на ранних стадиях существования столь однородно по температуре, но, увы, ничего не получилось. Математический аппарат теории не обеспечил достаточной степени «взбивания», чтобы объяснить имеющиеся эффекты. После миксера «Миксмастер» тоже оставались значительные неоднородности, а вовсе не то однообразие «молочного коктейля», которое мы наблюдаем сейчас.
Начало космоса представало полной загадкой, возможность его кончины подкидывала дополнительные головоломки. В те времена космологи рассматривали два сценария смерти вселенной: Большое схлопывание, обратный Большому взрыву процесс, когда расширение сменяется сжатием и заканчивается той же сингулярностью; Большое замораживание, когда расширение продолжается, но замедляется, звезды сияют миллиарды лет, но, в конце концов, выгорают, и наступает тепловая смерть мироздания.
Уилер в основном интересовался вариантом Большого схлопывания и его последствиями. Наряду с Большим взрывом и черными дырами он видел его как ключевой полигон для изучения пограничных состояний гравитации и ее влияния на время и причинность. Однажды в интервью он назвал Большой взрыв, черные дыры и Большое схлопывание «тремя вратами времени»121.
На встрече Американского физического общества в 1966-м122 Уилер говорил, что Большое схлопывание должно представить еще более странную ситуацию, когда космос начнет сжиматься. Предположим, что расширение вселенной, начатое Большим взрывом, запустило вперед время и вызвало рост энтропии. Тогда в эру схлопывания энтропия может начать уменьшаться, и это будет связано с изменением потока времени. Биологические процессы могут пойти назад, и люди начнут жить свои жизни в обратном порядке. В конечном итоге человечество превратится в одноклеточных существ, от которых некогда произошло. По мере сжатия космоса Земля снова станет облаком пыли, и потом вселенная сожмется в точку бесконечной плотности.
Но в заключение Уилер признал, что это все не более чем чистая теория.
Карусель Гёделя
Математик Карл Гёдель был одержим идеей двинуть в обратном направлении стрелки часов. Близкий друг Эйнштейна, он вместе с ним работал в институте перспективных исследований в Принстоне. Прославился он в первую очередь теоремами неполноты, опубликованными в 1931 году, в которых показал, что никакая логическая система не может быть самодостаточной. Эти выводы вдохновили британского математика Алана Тьюринга спроектировать машину Тьюринга, развить систематический подход к процессу вычислений, что в свою очередь стало источником вдохновения для Джона фон Неймана, создавшего первые электронные компьютеры.
В 1949 году, в канун семидесятого юбилея Эйнштейна, Гёдель продемонстрировал другу то, что сам он счел знаменательным открытием: вращательное решение уравнений общей теории относительности, делавшее возможным движение обратно во времени. Если вселенная обладает в точности правильным количеством вращения, а также корректной пропорцией материи определенного типа, то петли определенного типа, описанные в пространстве, дадут возможность переместиться в прошлое. Следовательно, при особенных условиях теория гравитации Эйнштейна допускает некую разновидность путешествия во времени.