Термин «партон» имел некоторое хождение в 70-х, но победило более причудливое словечко «кварк». Мы теперь знаем, что существуют шесть «ароматов» (разновидностей) кварков: нижний, верхний, странный, очарованный, прелестный и истинный. Они значительно отличаются по массе, верхний и нижний – легчайшие и наиболее распространенные. Обычные ядра атомов состоят только из них. Другие ароматы более экзотичны, их находят в космическом излучении и «обломках», что остаются после столкновения частиц с высокой энергией.
Все адроны, существующие в природе или воспроизводимые в коллайдерах, являются комбинациями шести ароматов кварков и их противоположностей-антикварков. Барионы – это три кварка, мезоны – дуэты кварка и антикварка; например, протон – верхний, верхний и нижний кварки, нейтральный каон – смесь нижнего-антистранного и странного-антинижнего.
Когда ученые работали над теорией квантового поля кварков, они использовали квантовую электродинамику и метод диаграмм Фейнмана. Они ввели новую частицу обмена, названную «глюон», способную переносить сильное взаимодействие точно так же, как фотоны переносят электромагнетизм. Диаграмма Фейнмана представляет глюон в виде спирали.
Оскар Гринберг, студент Уилера по курсу общей теории относительности, когда они посещали Эйнштейна, придумал жизнеспособный способ описания эквивалента электрического заряда для сильного взаимодействия: цветовой заряд. Каждый кварк может обладать либо красным, либо зеленым, либо голубым зарядом, а барион комбинировать все три. Это вовсе не настоящие цвета, термин условный точно так же как «аромат», и не имеет ничего общего с реальной окраской.
Квантовая теория сильного взаимодействия стала известна под именем квантовой хромодинамики (КХД).
КХД не стояла на месте, точно так же развивалась и электрослабая теория, комбинация квантовой электродинамики и слабого взаимодействия. Поэтому теоретики в шестидесятых и семидесятых мечтали о перспективе всеобщей унификации: объединить три из четырех фундаментальных взаимодействий в единую квантовую теорию, куда будут входить кварки, фотоны, лептоны, глюоны и переносчики слабого взаимодействия. Ученые предполагали, что при достаточно высокой температуре, например в пылающей топке Большого взрыва, все три взаимодействия имели одну силу, радиус действия и прочие свойства. Только когда вселенная немного остыла, эти силы начали различаться.
Самые смелые надеялись, что в общую схему удастся добавить и четвертую силу, гравитацию. Но любые попытки квантовать ее приводили к бесконечным величинам, а дисбаланс в силе между этим взаимодействием и тремя остальными выглядел слишком большим, некоторые предлагали сначала унифицировать первые три. Но даже попытки скомбинировать сильное и электрослабое взаимодействия в Теории Великого объединения успехом не увенчались.
Любопытно, что значимое различие между сильным и слабым взаимодействиями имело отношение к инвариантности заряд-пространство. Первое сохраняло симметрию данного типа, второе ее нарушало, а если учесть соединение с временной симметрией, казалось странным, что сильные процессы выглядели одинаковыми при движении вперед и назад во времени, в то время как слабый распад мог в некоторых случаях показать разницу.
Не могло ли время наконец стать обратимым, особенно если все силы в конечном итоге едины при высоких энергиях?
Альфа и омега
Открытия в мире частиц, такие как измерения Кронина и Фитча в отношении каонов, обнаруживали странные факты о времени в очень маленьком масштабе, но и полученные космологами результаты порой выглядели не менее чудными. Данные об РКИ Пензиаса и Уилсона продемонстрировали значительную однородность в температуре вне зависимости от того, куда они направляли свои детекторы.
Космическое микроволновое излучение высвободилось, когда формировались атомы, около 380 тысяч лет после Большого взрыва. Термодинамика говорит нам, что температуры выравниваются, если характеризуемые ими области находятся в термальном контакте, то есть достаточно близко, чтобы обмениваться фотонами. Но к тому времени космос развивался уже долго, и отдельные его части далеко отстояли друг от друга. Учитывая то, что они практически не имели шансов выравниваться по температуре, почему реликтовое излучение из той эпохи выглядит столь невероятно однородным? Этот парадокс именуется «проблемой горизонта».
Астрономы знали, что данные Пензиаса и Уилсона не точны, что более совершенные инструменты могли бы обнаружить расхождения в температуре РКИ, обозначить более плотные регионы, ставшие семенами, из которых выросла структура. Подобные маленькие неоднородности могли увеличиться с течением времени под влиянием гравитационных сил и сформировать звезды и галактики.