«Бог не играет в кости» — этой знаменитой фразой Эйнштейн отреагировал на интерпретацию квантовой механики, предложенной в Копенгагене, особенно после того как в 1927 году Бор наделил вероятностным характером новую физику. Это не противопоставление теологического (Эйнштейн) аргумента математическому (Бор), а столкновение двух противоположных философских концепций.
Эйнштейн и Бор впервые встретились через месяц после Съезда в Комо, когда пятый Сольвеевский конгресс собрал примерно 30 физиков в Брюсселе. В столицу Бельгии прибыли величайшие ученые эпохи, большинство из них уже имели Нобелевскую премию или удостоились ее позже. Сольвеевские конгрессы — это неформальные дискуссии и обмен идеями без ограничений по времени, свойственных другим встречам. Отсюда — фиксированное число приглашенных, их интернациональность и размещение в общем для всех участников месте, роскошном отеле «Метрополь» в центре Брюсселя.
Эйнштейн спускался к завтраку с примером или мысленным экспериментом, чтобы доказать Бору неверность его интерпретации, неверность принципа дополнительности. Нередко Бор тратил много времени, прежде чем отреагировать и найти ответную реплику на поставленную проблему. Однако день всегда заканчивался победой Бора над Эйнштейном, который тем не менее не сдавался и продолжал доказывать ошибку Бора и его последователей.
Каковы аргументы Эйнштейна? Для начала надо отметить, что примерно с 1925 года основной интерес немецкого физика сосредоточился на объединении его теории гравитации (общей теории относительности) с электромагнетизмом, что было никак не связано с проблемами квантовой физики. В то же время некоторые его квантовые разработки, осуществленные с 1924 по 1925 год, подтверждали один из его прогнозов 1905 года, который дольше всего не принимали в научном сообществе. Речь шла о существовании квантов света, или фотонов, которые подтверждали корпускулярную природу света. Эксперименты Артура Комптона (1892-1962) в США, принцип де Бройля и в какой-то степени сам принцип дополнительности свидетельствовали о существовании фотонов.
Согласно Эйнштейну, глубинная ошибка заключалась в том, что копенгагенская интерпретация была в основном вероятностной и неопределенной: то, что квантовый мир открыт и предлагает различные выходы из одной и той же ситуации, принималось как должное. Если отказаться от понятия траектории и сосредоточиться только на начальных условиях заданной системы и возможных конечных состояниях, квантовая физика перестанет быть детерминированной и давать единственное решение проблем.
Надо понимать вопрос вероятности во всей его радикальности, чтобы уяснить неприятие Эйнштейна. Например, метеорологический прогноз всегда вероятностный: никогда точно не известно, какая именно будет погода. Это связано с нашим незнанием, поскольку нет способа вычислить все переменные, влияющие на погоду. Но неопределенность не является ее главным свойством, это всего лишь результат нашего незнания и неспособности к вычислениям. В квантовой механике неопределенность, напротив, свойственна относящимся к ней проблемам, поскольку изучаемая система варьируется в зависимости от того, как она изучается. Показателен пример с фонариком и потоком света (см. предыдущую главу): чтобы измерить, надо участвовать в процессе, и при этом изменяется то, что измеряется.