Чтобы определить аддитивные заселенности АО, необходимые, например, для вычисления формальных зарядов атомов, следует сопоставить каждой АО φа неортогонального базиса орбиталь φλa некоторого ортонормированного базиса. Требование минимальной деформации исходных орбиталей в процессе ортогонализации однозначно отбирает из всех возможных методов ортогонализации "симметричный" метод Лёвдина (рис. 24)
Рис. 24. Геометрическая иллюстрация лёвдинской ортогонализации двух неортогональных векторов φ1 и φ2
Как показали Слэтер и Костер, ортонормировка по Лёвдину сохраняет трансформационные свойства неортогонального базиса в том смысле, что при унитарном преобразовании базиса {φ} соответствующий лёвдинский базис {φλ} преобразуется той же унитарной матрицей. Отсюда следует, в частности, что орбитали φλа исходного многоцентрового базиса АО и соответствующие им орбитали φλa преобразуются по одним и тем же представлениям подгруппы GA точечной группы симметрии молекулы (G). При этом подгруппа GA включает только те преобразования группы G, которые не затрагивают центр А (т, е, ядро атома A). Таким образом, орбитали φa и фλa обладают одинаковыми свойствами симметрии относительно указанных преобразований.
Согласно теореме Карлсона и Келлера, лёвдинский базис
Представление об изменении формы и размеров атомных орбиталей при их ортогонализации можно получить, сравнивая средние значения
Таблица 8. Средние значения
С учетом сказанного выше, аддитивные (лёвдинские) заселенности (n0) орбиталей неортогонального базиса φ следует отождествлять с заселенностями соответствующего лёвдинского базиса:
Формальный заряд qA атома А определяется зарядом его ядра ZA и аддитивными заселенностями представляющих этот атом орбиталей:
Следует отметить сильную зависимость потенциала ионизации Вот заряда атома. Несколько примеров, характеризующих эту зависимость, приведено в табл. 9.
Таблица 9. Зависимость орбитальных потенциалов ионизации от атомного заряда q (экспериментальные данные) [27]
Формальные заряды атомов используются часто для оценки энергии электростатического взаимодействия
и для определения дипольных моментов больших молекул в точечном приближении
Рассмотрим теперь несколько примеров, иллюстрирующих вложенный формализм анализа заселенностей многоцентрового азиса перекрывающихся АО.
1. Для молекулы Н2 для π-электронных оболочек молекул азота (N2), этилена, ацетилена и для ряда других аналогичных двухорбитальных систем, содержащих по два электрона, матрица плотности и заселенности АО определяются симметрией и перекрыванием базисных АО:
где интеграл перекрывания АО S>0. Уменьшая расстояние между атомами, в пределе мы получим
Напротив, при бесконечном разведении атомов
2. π-Электронные системы в молекулах F2, ClF и в других аналогичных молекулах независимо от их симметрии (D∞h или C∞h) характеризуются заселенностями АО π-типа
которые не зависят от интегралов перекрывания. Эти АО представляют неподеленные электронные пары соответствующих атомов.
3. Валентное состояние атома Li в молекуле LiH (табл. 10) характеризуется положительным формальным зарядом и существенным перераспределением электронной плотности между 2s-орбиталью и виртуальной (для основной конфигурации свободного атома Li) 2pσ-орбиталью. Две эти АО незначительно различаются по заселенности перекрывания в молекуле LiH, в то время как 1s-AO лития практически не участвует в образовании химической связи и представляет неподеленную электронную пару атомного остова.
Таблица 10. Анализ заселенностей АО в молекулах LiH, HCN, НСO2Н, (НСO2Н)2