Читаем Курс теоретической астрофизики полностью

В таблице 17 для некоторых молекул приведены значения параметров, входящих в формулу (14.20). При этом энергия диссоциации 𝑈 дана в электронвольтах, приведённая масса 𝑀 — в атомных единицах массы, расстояние между ядрами 𝑟₀ — в ангстремах.

Таблица 17

Некоторые параметры молекул

Молекула

Энергия

диссоциации

Приведённая

масса

Расстояние

между ядрами

𝙷₂

 4,48

0,504

0,742

𝙲₂

 6,3

6,002

1,312

𝙲𝙷

 3,47

0,930

1,120

𝙲𝙾

11,1

6,858

1,209

𝙲𝙽

 7

6,464

1,172

𝙽𝙷

 3,6

0,940

1,038

𝙾₂

 5,08

8,000

1,207

𝙾𝙷

 4,37

0,948

0,971

𝚃𝚒𝙾

 6

11,998

1,620

𝚉𝚛𝙾

 7

13,584

1,42

Вычисления по формуле (14.20) показывают, что в атмосферах холодных звёзд (с температурами порядка 2000—3000 К) должно находиться много различных молекул. С увеличением температуры число молекул в атмосферах убывает. Однако даже при температурах порядка 5000 K в атмосферах должно находиться ещё достаточное число молекул, чтобы они могли быть обнаружены при наблюдениях. В самом деле, в спектре Солнца наблюдается большое число слабых молекулярных полос.

Для расчёта молекулярных спектров звёзд необходимо не только уметь определять количество молекул в атмосферах, но и знать структуру спектров и коэффициенты поглощения в полосах. Такие сведения для большинства молекул в настоящее время являются лишь приближёнными. Тем не менее, пользуясь имеющимися данными, можно вычислить изменение интенсивностей полос различных молекул с изменением температуры звезды. Если принять, что звёздные атмосферы по химическому составу не отличаются заметно от атмосферы Солнца, то вычисленные молекулярные спектры в общих чертах совпадают с молекулярными спектрами звёзд классов G—K—M.

Важно то, что молекулярные спектры звёзд существенно зависят от давления в атмосферах (так как число молекул 𝑛𝐴𝐵 пропорционально числам атомов 𝑛𝐴 и 𝑛𝐵). Поэтому интенсивности полос одних и тех же молекул в спектрах гигантов и карликов весьма различны. Таким образом, по характеру молекулярных спектров звёзд можно судить об ускорении силы тяжести в атмосферах.

Как уже говорилось, в области поздних классов происходит разветвление спектральной последовательности, что объясняется различиями в химическом составе звёздных атмосфер. В атмосферах звёзд класса M кислорода больше, чем углерода, вследствие чего кислород соединяется в основном с титаном, образуя молекулы 𝚃𝚒𝙾. В атмосферах же звёзд классов R и N углерода больше, чем кислорода. Поэтому кислород соединяется не с титаном, а с углеродом, образуя молекулу 𝙲𝙾 (не имеющую полос в видимой части спектра). Другие же атомы углерода входят в молекулы 𝙲𝙷, 𝙲𝙽 и 𝙲₂, характерные для спектров классов R и N.

5. Белые карлики.

Спектры белых карликов сильно отличаются от спектров звёзд главной последовательности. Основная их особенность — очень небольшое число линий поглощения. Значительная часть белых карликов вообще не содержит заметных линий поглощения в своих спектрах (эти спектры относят к классу DC). В спектрах белых карликов класса DB присутствуют лишь некоторые линии гелия. Большинство изученных белых карликов обладает спектрами класса DA, в которых содержится только несколько первых членов бальмеровской серии водорода. В спектрах белых карликов классов DF, DG и DK присутствуют также линии H и K 𝙲𝚊 II и некоторые линии 𝙵𝚎 I.

С помощью 200-дюймового телескопа Гринстейн получил спектрограммы нескольких десятков белых карликов, позволившие измерить профили и эквивалентные ширины линий поглощения (см. [9]). Он считает, что белые карлики делятся на две последовательности. Атмосферы звёзд одной из них состоят в основном из водорода (спектральные классы DA, DF, DG, DK), а атмосферы звёзд второй — в основном из гелия (спектральные классы DB и DC). Горячие звёзды второй последовательности содержат в своих спектрах линии гелия и принадлежат к классу DB. В спектрах же холодных звёзд второй последовательности линии гелия наблюдаться не могут и эти звёзды относятся к классу DC.

Основные черты спектров белых карликов объясняются огромными ускорениями силы тяжести в их атмосферах (порядка 10⁶-10¹⁰ см/с²). Это приводит к большим концентрациям частиц в атмосферах и, следовательно, к сильному действию эффекта Штарка. По указанной причине бальмеровские линии в спектрах белых карликов оказываются очень широкими (их эквивалентные ширины доходят до десятков ангстрем). Вместе с тем высокие члены бальмеровской серии сливаются и мы видим лишь несколько первых членов серии (обычно не больше пяти). Труднее объяснить слабость линий металлов в спектрах белых карликов. Может быть, здесь играет роль гравитационное разделение атомов, т.е. то обстоятельство, что под действием силы тяжести тяжёлые атомы оказываются в более глубоких слоях атмосферы, чем лёгкие.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука