Читаем Курс теоретической астрофизики полностью

На рис. 12 даются полученные кривые роста. По оси абсцисс отложена величина

η₀

=

𝑘₀𝑛

αν

,

а по оси ординат — величина

𝑊λ

λ

𝑐

𝑣

.

При больших значениях η₀ кривая разветвляется на ряд кривых, соответствующих разным значения параметра 𝑎.

Кривые роста, изображённые на рис. 12, относятся к случаю, когда βν⃰=³/₂. Напомним, что βν⃰=βνα/αν, где βν определяется формулой (6.7). Следовательно, величина βν⃰, а с ней вместе и кривая роста, могут заметно меняться при переходе от одного участка спектра к другому.

4. Построение кривых роста по наблюдательным данным.

Теоретические кривые роста зависят от ряда параметров (𝑘₀,𝑎,𝑣), которые заранее точно не известны. Поэтому для определения этих параметров приходится пользоваться наблюдёнными эквивалентными ширинами линий. С этой целью для данной звезды по линиям рассматриваемого атома строится эмпирическая кривая роста. Путём сравнения этой кривой с теоретической кривой роста и определяются значения упомянутых параметров.

Возможность построения кривой роста по наблюдательным данным основана на наличии в спектре звезды мультиплетов. Для линий мультиплета, имеющих общий нижний уровень, число 𝑁 одно и то же, а силы осцилляторов часто известны. Поэтому для указанных линий значения величины lg 𝑋₀, которая согласно формулам (12.17) и (12.6) равна

lg 𝑋₀

=

lg ƒ

+

lg

√π𝑒²

𝑚ν₀𝑣

𝑁

,

(12.25)

отличаются друг от друга только неизвестным постоянным слагаемым. Это обстоятельство позволяет по наблюдённым эквивалентным ширинам линий, входящих в мультиплет, построить часть кривой роста с неизвестным, однако, нуль-пунктом на оси абсцисс. Соответствующие участки кривой роста могут быть построены также по линиям других мультиплетов. После этого путём перемещения полученных участков кривой роста вдоль оси абсцисс для достижения согласия между ними может быть определена полная кривая роста. На рис. 13 в виде примера дана кривая роста, построенная Д. Кулиевым по линиям 𝙵𝚎 I (точки), 𝙲𝚊 I (крестики) и 𝙽𝚊 I (кружочки) в спектре α Персея.

Рис. 13

Сравнение эмпирической кривой роста с семейством теоретических кривых даёт возможность выбрать ту из них, которая ближе всего соответствует наблюдениям. Тем самым определяются значения параметров 𝑣 и α (или Γ) для рассматриваемых атомов в атмосфере данной звезды. По полученной таким путём кривой роста может быть найдено и число поглощающих атомов 𝑁.

Изучение звёздных атмосфер при помощи кривых роста приводит к весьма интересным результатам. Укажем, например, на то, что для звёзд-сверхгигантов значения параметра 𝑣 часто оказываются в несколько раз превосходящими средние тепловые скорости атомов. Это объясняется турбулентными движениями в атмосферах звёзд (см. § 13).

В случае звёзд-карликов найденные из наблюдений значения параметра Γ оказываются во много раз больше (например, в случае Солнца — в 5—10 раз) соответствующих теоретических значений, определённых при учёте только затухания вследствие излучения. Это значит, что в атмосферах звёзд большую роль играет также затухание вследствие столкновений. Большое значение Γ для звёзд-карликов объясняется сравнительно большой плотностью их атмосфер.

5. Содержание различных атомов в атмосферах.

Основным назначением кривой роста является определение с её помощью химического состава звёздных атмосфер. По эквивалентной ширине линии кривая роста даёт число поглощающих атомов, т.е. число атомов в нижнем состоянии для данной линии. В большинстве случаев это состояние является возбуждённым. Чтобы перейти к числу атомов в основном состоянии, обычно пользуются формулой Больцмана. Часто бывает, что в спектре звезды наблюдаются линии, возникающие из возбуждённых состояний нейтрального атома, а большинство атомов данного элемента находится в ионизованном состоянии (или наоборот). В таком случае для нахождения полного числа атомов этого элемента приходится применять также формулу ионизации Саха. Входящая в эту формулу концентрация свободных электронов должна быть предварительно определена одним из способов, описанных в следующем параграфе.

Указанный метод определения химического состава звёздных атмосфер довольно прост и часто применяется на практике. Однако надо иметь в виду, что он связан с двумя погрешностями. Первая из них возникает вследствие отклонения распределения атомов по состояниям от распределения, даваемого формулами Больцмана и Саха. Источником другой погрешности является использование средних для всей атмосферы значений температуры и электронной концентрации, в то время как эти величины сильно меняются в атмосфере.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука