Величина 𝐻ν характеризует относительное распределение энергии в непрерывном спектре звезды. Важной особенностью спектров звёзд некоторых классов являются скачки интенсивности у пределов серий, вызванные скачками коэффициента поглощения. В частности, в спектрах звёзд классов 𝙰 и 𝙱 должны быть скачки у предела серии Бальмера (интенсивность до предела больше интенсивности после предела). Приближённо бальмеровский скачок может быть найден по формуле (6.10). Более точные данные о бальмеровских скачках в звёздных спектрах будут приведены ниже.
Пользуясь формулой (6.10) и наблюдательными данными о распределении энергии в непрерывном спектре звезды, можно приближённо определить зависимость коэффициента поглощения от частоты в фотосфере (точнее говоря, величину αν/α). Такое определение было сделано для Солнца, когда ещё не был решён вопрос о том, какими атомами вызывается в основном поглощение в фотосфере Солнца. Это исследование сильно способствовало решению указанного вопроса.
2. Случай поглощения атомами одного рода.
Изложенная выше приближённая теория даёт результаты, которые могут быть использованы лишь для грубых оценок. Переходя теперь к более строгой теории фотосфер, мы сначала рассмотрим один частный случай, в котором эта теория сравнительно проста. Именно, допустим, что поглощение в фотосфере вызывается в основном атомами одного рода, т.е. атомами одного элемента в определённой стадии ионизации. В этом случае объёмный коэффициент поглощения может быть представлен в виде произведения двух функций, одна из которых зависит только от частоты и температуры, а другая — только от температуры и плотности, т.е.
α
ν
=
Φ(ν,𝑇)
Ψ(𝑇,ρ)
.
(6.11)
Возможность такого представления видна, например, из формулы (5.11), определяющей коэффициент поглощения αν для водорода.
Если αν даётся формулой (6.11), то уравнение переноса излучения может быть записано так:
cosθ
𝑑𝐼ν
𝑑ζ
=
Φ(ν,𝑇)
[𝐼
ν
-𝐵
ν
(𝑇)]
,
(6.12)
где 𝐵ν(𝑇) — интенсивность излучения абсолютно чёрного тела при температуре 𝑇 и
ζ
=
∞
∫
𝑟
Ψ(𝑇,ρ)
𝑑𝑟
.
(6.13)
Уравнение лучистого равновесия (1.17) в данном случае принимает вид
∞
∫
0
Φ(ν,𝑇)
𝐵
ν
(𝑇)
𝑑ν
=
∞
∫
0
Φ(ν,𝑇)
𝑑ν
∫
𝐼
ν
𝑑ω
4π
.
(6.14)
Из уравнений (6.12) и (6.14) может быть получено одно интегральное уравнение для определения температуры 𝑇 в виде функции от ζ. Если эта функция найдена, то из уравнения (6.12) можно определить интенсивность излучения 𝐼ν(ζ,θ) и, в частности, интенсивность излучения на границе звезды, т.е. величину 𝐼ν(0,θ).
Введение независимой переменной ζ даёт возможность избежать нахождения распределения плотности в фотосфере при определении спектра звезды. Если же нас интересует не только спектр звезды, но и величины 𝑇 и ρ в зависимости от 𝑟, то, зная функцию 𝑇(ζ), их можно легко найти из уравнения (6.13) и уравнения механического равновесия (4.42).
Так как самым распространённым элементом в поверхностных слоях звёзд является водород, то можно было бы думать, что поглощение излучения в фотосферах всех звёзд вызывается в основном атомами водорода. В действительности дело обстоит не так. В фотосферах звёзд поздних классов атомы водорода находятся почти полностью в первом состоянии, вследствие чего они поглощают излучение практически только за границей серии Лаймана. Между тем при низких температурах кривая распределения энергии по частотам имеет максимум в инфракрасной части спектра. Следовательно, в фотосферах звёзд поздних классов поглощение излучения водородными атомами не может играть существенной роли.
Однако с увеличением температуры растёт число атомов водорода в возбуждённых состояниях. Вместе с тем происходит смещение максимума кривой распределения энергии по частотам в сторону больших частот. Поэтому с увеличением температуры роль атомов водорода в поглощении возрастает. Подсчёты показывают, что в фотосферах звёзд классов 𝙰 и 𝙱 (точнее говоря, звёзд с эффективными температурами порядка 10 000-20 000 K) поглощение производится в основном атомами водорода. В фотосферах более горячих звёзд существенную роль в поглощении играют также атомы гелия.
Таким образом, для звёзд с 𝑇𝑒≃10 000-20 000 K коэффициент поглощения обусловлен в основном водородом и может быть представлен в форме (6.11). Теория фотосфер этих звёзд была разработана Э.Р. Мустелем [6]. Вместо рассмотрения упомянутого интегрального уравнения для функции 𝑇(ζ) он предложил определять её последовательными приближениями из уравнения
𝑑𝑇
=
𝐻
,
𝑑ζ
4π
∞
∫
0
1
𝑑𝐾
ν
-
𝑑ν
Φ(ν,𝑇)
𝑑𝑇
(6.15)
где
𝐾
ν
=
∫
𝐼
ν
cos²θ
𝑑ω
4π
.
(6.16)
Уравнение (6.15) получается из (6.12) путём умножения его на cos θ/Φ(ν,𝑆) и интегрирования по всем частотам и направлениям. Величина 𝐻 есть полный поток излучения в фотосфере. Как мы знаем, 𝐻=const, что является следствием уравнения (6.14). При решении уравнения (6.15) в качестве первого приближения можно принять 𝐾ν=𝐵ν(𝑇).
Э. Р. Мустель вычислил распределение энергии в непрерывном спектре звёзд с эффективными температурами 10 500 К, 15 500 К и 20 500 К. Часть полученных им результатов приведена на рис. 8 и в табл. 1.
Рис. 8