Читаем Курс теоретической астрофизики полностью

До сих пор мы говорили только о межзвёздной среде в нашей Галактике. Однако для понимания природы межзвёздной среды очень большое значение имеют также результаты изучения других галактик. Эти результаты основываются на наблюдениях галактик как в оптической области спектра, так и в радиодиапазоне (см. [9]).

Самыми близкими к нам галактиками являются Магеллановы Облака. В них обнаружено много газовых туманностей и вызывающих их свечение горячих звёзд. Особенно велика туманность S Золотой Рыбы, масса которой составляет, по-видимому, около миллиона масс Солнца. От этой туманности идёт сильное радиоизлучение в непрерывном спектре, имеющее тепловое происхождение. Основная же часть радиоизлучения Магеллановых Облаков в непрерывном спектре имеет нетепловую (вероятно, синхротронную) природу. Важные результаты дали наблюдения излучения Магеллановых Облаков в радиолинии с длиной волны 21 см. В частности, по интенсивности этого излучения удалось определить массу находящегося в них межзвёздного водорода (приблизительно 6⋅10⁸ 𝑀 в Большом Магеллановом Облаке и 4⋅10⁸ 𝑀 — в Малом).

Очень близка к нам также галактика M 31 («туманность Андромеды»), во многих отношениях похожая на Млечный Путь. Изучение её свечения в линии λ=21 см позволило определить скорость вращения на разных расстояниях от центра и распределение межзвёздного водорода. Радиоизлучение галактики в непрерывном спектре идёт от более протяжённой области, чем оптическое излучение. Это свидетельствует о наличии короны, подобной короне нашей Галактики. Интенсивность излучения меняется с частотой по закону ν-0,7, что может быть объяснено синхротронным характером излучения.

Разными наблюдателями были измерены также потоки радиоизлучения, идущие от многих других галактик. Определённое по потоку излучения в линии λ=21 см количество межзвёздного водорода в галактике оказалось сильно зависящим от её структуры. Этот факт представляет значительный интерес с точки зрения теории развития галактик.

Подавляющее большинство галактик излучает в радиодиапазоне примерно такое же количество энергии, как и Млечный Путь. К ним, в частности, относятся Магеллановы Облака и туманность Андромеды. Однако количество энергии, излучаемое в радиочастотах некоторыми галактиками, оказывается на несколько порядков больше. Такие галактики принято называть радиогалактиками. Характерным примером радиогалактики является радиоисточник Лебедь А, излучающий в радиодиапазоне примерно в миллион раз больше энергии, чем наша Галактика. На фотографиях этот источник представляет собой весьма необычную галактику с двойным ядром. Её излучение в видимой части спектра сосредоточено в ярких запрещённых линиях (𝙾 I 𝙾 II, 𝙾 III, 𝙽𝚎 II, 𝙽𝚎 III и др.). Ширина этих линий свидетельствует о внутренних движениях со скоростями порядка 400 км/с. Бааде и Минковский, подробно изучившие источник Лебедь А, высказали гипотезу, что в данном случае мы имеем дело со столкновением между собой двух галактик. В дальнейшем такая гипотеза применялась и к другим радиогалактикам, однако В. А. Амбарцумян выдвинул убедительные возражения против неё. Согласно его взглядам галактики с двойными ядрами находятся в процессе деления и этот процесс на определённом этапе сопровождается сильным радиоизлучением и образованием эмиссии в видимой области спектра.

Другим примером радиогалактики может служить радиоисточник Дева А, представляющий собой в видимых лучах гигантскую галактику почти сферической формы. В спектре ядра галактики обнаружена сильная эмиссионная линия λ 3727 [𝙾 II], возникающая, как надо думать, в газовых туманностях с небольшой плотностью. Удивительная особенность этой галактики состоит в том, что из её ядра выходит яркий выброс голубого цвета. Излучение выброса оказывается поляризованным (со степенью поляризации около 30%), а его спектр — чисто непрерывным. Можно предполагать, что свечение выброса в видимой области спектра подобно свечению Крабовидной туманности, т.е. имеет синхротронную природу.

Подробное изучение радиогалактик показывает, что возникновение их радиоизлучения, по-видимому, связано с бурной активностью их ядер. Такая активность состоит в выбрасывании вещества из ядра, приводящего к появлению в галактике релятивистских электронов, газовых облаков и нестационарных звёзд. В результате наблюдается сильное радиоизлучение, свечение голубых выбросов и эмиссионные линии в спектрах галактик.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука