Читаем Курс теоретической астрофизики полностью

exp

-

𝑁

sin θ

θ

0

𝑘

ν

-

ν₀

-

ν₀

𝑣

𝑐

cos θ'

𝑑θ'

×

×

cos θ

sin θ

𝑑θ

.

(29.10)

Поток излучения в непрерывном спектре вблизи линии, очевидно, равен

𝐻

=

π/2

0

𝐼(θ)

cos θ

sin θ

𝑑θ

.

(29.11)

При помощи формул (29.10) и (29.11) может быть определена величина 𝑟ν=𝐻ν/𝐻, которая и характеризует профиль линии.

Вычисленные по приведённым формулам профили линий поглощения оказываются весьма похожими на профили линий в спектрах новых звёзд. Из сравнения теоретических и наблюдённых профилей можно определить скорость расширения атмосферы 𝑣.

Рис. 39

После нахождения величины 𝑟ν мы можем также вычислить эквивалентную ширину линии 𝑊, для чего надо воспользоваться формулой (12.1). В данном случае величина 𝑊 зависит не только от числа поглощающих атомов 𝑁, но и от скорости расширения 𝑣. Поэтому мы получаем семейство «кривых роста», представляющих зависимость 𝑊 от 𝑁 при разных значениях параметра 𝑣. На рис. 39 даны для примера кривые роста, построенные М. А. Аракеляном при помощи приведённых формул для некоторых значений отношения скорости расширения 𝑣 к средней тепловой скорости атомов 𝑢. При этом коэффициент поглощения вычислялся по формуле (8.18) при 𝑎=0,01. По наблюдённым значениям 𝑊 и 𝑣 с помощью соответствующей кривой роста можно определить число поглощающих атомов 𝑁. Такие определения позволяют сделать заключение о химическом составе атмосферы. Надо отметить, что использование в данном случае обычной кривой роста (найденной в § 12 для неподвижных атмосфер) приводит к большим ошибкам в химическом составе.

Из наблюдений следует, что в предмаксимальных спектрах ряда новых происходило уменьшение смещения абсорбционных линий с течением времени. Сначала этот эффект пытались объяснять торможением оболочки под действием притяжения звезды. При этом для масс новых звёзд были получены чрезвычайно большие значения (порядка сотен и тысяч масс Солнца). Однако потом было установлено, что массы новых — такого же порядка, как и массы других звёзд. Поэтому от указанного объяснения пришлось отказаться. Возможно, что в действительности уменьшение смещения линий поглощения в спектрах новых вызвано вовсе не изменением скорости оболочки, а изменением эффективного уровня поглощающего вещества в оболочке, в которой скорость зависит от расстояния до центра звезды. Если внешние слои оболочки расширяются с большей скоростью, чем внутренние, то по мере рассеяния внешних слоёв эффективный уровень поглощающего вещества будет приближаться к внутренней границе и смещение абсорбционных линий будет убывать. Следует заметить, что такого рода явления всегда должны приниматься во внимание при интерпретации изменения смещений линий поглощения.

Спектры новых сразу после момента максимума блеска чрезвычайно сложны и их теоретическая интерпретация встречает большие трудности. По-видимому, большую роль в создании таких спектров играет выбрасывание вещества из звезды, начинающееся после отрыва от неё оболочки. Этот процесс приводит к образованию вокруг звезды протяжённой атмосферы, которая поглощает ультрафиолетовое излучение звезды и перерабатывает его в кванты меньших частот. Надо считать, что протяжённая атмосфера обладает в это время довольно большой оптической толщиной в непрерывном спектре, так как её абсорбционный и эмиссионный спектры характерны для звёзд сравнительно поздних классов (так называемый диффузно-искровой спектр). Судя по смещению абсорбционных линий (или по ширине эмиссионных линий) скорость истечения вещества из звезды превосходит скорость движения оболочки. Поэтому выброшенное вещество догоняет оболочку и в ней возникают эмиссионные линии вследствие столкновений. Вместе с тем выброшенное вещество, присоединяясь к оболочке, увеличивает её скорость (об этом см. в § 30), благодаря чему возрастает смещение абсорбционных линий, замеченное при наблюдениях. Следует также считать, что после отрыва от звезды главной оболочки в некоторых случаях от звезды отрываются дополнительные оболочки. Так можно объяснить возникновение вторичных максимумов на нисходящей ветви кривой блеска новой, а также появление добавочных систем абсорбционных линий в её спектре.

С течением времени мощность выбрасывания вещества из звезды уменьшается и протяжённая атмосфера становится прозрачнее для ультрафиолетового излучения звезды. В дальнейшем оболочка светится в основном за счёт этого излучения. Однако сначала это свечение происходит сложнее, чем в туманностях, вследствие непрозрачности оболочки для излучения в линиях. Поэтому в данном случае интенсивности эмиссионных линий следует вычислять на основе теории, изложенной в §28. Такие вычисления приводят к согласию между теоретическим и наблюдённым бальмеровским декрементом.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука