«Это предложение, — указывает далее Эйлер, — заключает в себе основы для измерения силы инерции, так как на нем основывается все учение о том, как нужно учитывать материю или массу тел в механике. Следует обращать внимание на число точек, составляющих тело, которое должно быть приведено в движение, и масса тела должна быть принята пропорциональной этому числу. Эти точки надо считать равными между собой, но не так, что они равно малы, но так, что на них одна и та же сила производит равные действия. Если мы представим себе, что вся материя мира разделена на подобного рода равные точки или элементы, то количество материи по необходимости надо будет измерять числом точек, из которых оно составлено. В следующем предложении я покажу, что сила инерции пропорциональна этому числу точек или количеству материи».
Действительно, несколько ниже Эйлер формулирует предложение: «Силы инерции каждого тела пропорциональны количеству материи, из которой оно со стоит». Эйлер раскрывает знаменитое ньютоновское определение массы, вскрывает его атомистическую сущность и, подобно Ньютону, поясняет далее, что масса может быть измерена пропорциональным ей весом.
Когда Эйлер в приведенном выше основном предложении о пропорциональности сил массам употребляет выражение «точка b», «точка а», то это означает: «точка массы b», «точка массы а».(
В современных обозначениях предложение Эйлера записывают так:
F1/F2 = m1/m2 = a
где а - одинаковое действие силы на тело, т. е. ускорение. Отсюда:
F1/m1 = a, F2/ m2 = a,
или вообще:
F = ma.
В своей «Механике» Эйлер записывает основное уравнение динамики для прямолинейного движения в следующем виде:
dc=npdt/A где dc - дифференциал скорости, р -сила, А - масса, п - коэффициент пропорциональности.
Подчеркнем, что Эйлер знал векторный характер силы и принимал за ее направление ту прямую, «по которой она стремится двигать тело». В «Теории движения твердых тел» Эйлер выписывает уравнения движения тела, разлагая это движение на три прямолинейные составляющие по осям. Они в обозначениях Эйлера имеют вид:
где р, q, r - компоненты действующей силы по осям координат, А — масса точки, λ — коэффициент пропорциональности, определяемый выбором единиц.
Таким образом, Эйлер переформулировал основные понятия ньютоновской механики, придав им более ясную форму, сохранив, однако, сущность ньютоновских определений; выдвинул на центральное место второй, закон, сделав его стержнем всей механики и придав ему аналитическую форму. С помощью этого закона Эйлер в «Механике» рассматривает различные случаи движения свободной и несвободной точки.
В «Теории движения твердого тела» Эйлер развил механику вращательного движения, введя такие фундаментальные понятия, как главные оси, проходящие через центр инерции, по отношению к которым момент инерции имеет экстремальное значение. Свободную ось вращения Эйлер определяет как ось, которая не испытывает никакого силового воздействия при вращении тела вокруг нее.
Еще в 1758 г. Эйлер написал уравнения вращательного движения твердого тела, отнесенные к главным осям, в следующем виде:
где р, q, r - угловые скорости вращения относительно трех главных осей, жестко связанных с телом; А, В, С - главные моменты инерции; L, М, N - моменты сил, приложенных к телу, относительно тех же главных осей.
Как видим, Эйлер внес существенный вклад в развитие механики. Написанные им уравнения до cего времени «работают» в современных курсах.
В XVIII в. происходило не только преобразование методов ньютоновской механики. Этот век отмечен поисками общих принципов механики, эквивалентных законам Ньютона, или даже более общих, чем эти принципы. В результате этих поисков были открыты принципы возможных перемещений в статике, принцип Даламбера и принцип наименьшего действия Мопер-тюи — Эйлера в динамике.
Лагранж в своем труде «Аналитическая механика», излагая историю развития принципов статики, относит первые формулировки соотношений между силами, действующими в простых механизмах, и проходимыми путями к Гвидо убальдо и Галилею. Лагранж считает, что «древние, по-видимому, не знали этого закона». Однако у Герона Александрийского встречается «золотое правило механики» в виде утверждения: «Что выигрывается в силе, то теряется в скорости». Многие историки науки считают, что это правило было известно еще Аристотелю. Эмпирически это правило, несомненно, было знакомо людям, имеющим дело с простыми механизмами, очень давно.
Принцип возможных перемещений, который Лагранж называет принципом виртуальных скоростей, был сформулирован И.Бернулли в 1717 г. в письме к Вариньону и опубликован в «Новой механике» в 1725 г. Лагранж формулирует этот принцип следующим образом: