Читаем Курс истории физики полностью

Мы уже видели, что потребность в создании новой математики, математики переменных величин, была остро насущной. Эта математика постепенно создавалась усилиями ученых различных стран, начиная с Кеплера, Галилея и Декарта. Проблема квадратуры криволинейных площадей и проведение касательных к кривым, проблема максимума и минимума успешно решались для отдельных случаев рядом математиков и физиков. Но только Ньютон и Лейбниц разработали общий метод решения таких задач. Ньютон назвал свой метод исчислением флюксий, именуя этим термином то, что мы ныне подразумеваем под производной. Саму переменную функцию Ньютон назвал флюентой (текущей), флюксии Ньютон обозначал буквами с точкой наверху. О своем методе Ньютон сообщил в письме Лейбницу, переставив буквы латинской фразы: «Дана флюента, найти флюксию и обратно». Он выписал с соответствующим числовым коэффициентом те буквы, которые встречаются в этом предложении. Зашифрованное таким образом предложение было разгадано Лейбницем, который сообщил в ответ, что он сам владеет подобным же методом. Об этом обмене письмами Ньютон сообщил в одном из примечаний к первому изданию «Начал», указав, что метод Лейбница отличается от его собственного лишь обозначениями. Лейбниц обозначал производные штрихами (y', у" и т. д.) или как отношение дифференциалов (dx/dy)

Квадратуру Лейбниц обозначал удлиненной латинской буквой J, т. е. современным знаком интеграла.

Обозначения, введенные Лейбницем, оказались весьма удобными и сохранились до настоящего времени. Что же касается ньютоновских обозначений, то они употребляются в физике для указания производных по времени (х, x, y ).

Во втором и третьем изданиях «Начал», которые были выпущены при жизни Ньютона, примечание о переписке с Лейбницем было снято. Причиной этому был спор о приоритете, который разделил математиков того времени на два лагеря. Приверженцы одного из них защищали приоритет Ньютона, сторонники другого — Лейбница. Последующие исследования показали, что оба ученых пришли к великому открытию независимо друг от друга. Однако Энгельс был на стороне Лейбница и считал Ньютона плагиатором, так далеко докатились отголоски этого тягостного спора, который пришлось распутывать историкам математики.

Интересно, что в «Началах» Ньютон не пользуется своим методом, а доказывает свои предложения геометрическим способом и с помощью метода предельных отношений. Последний представляет собой дальнейшее развитие метода древних атомистов («метода неделимых»). Ньютон в поучениях к первой книге «Начал» подчеркивает это обстоятельство, разъясняя, что в его методе фигурируют не «неделимые» конечно малые величины, «математические атомы», а бесконечно малые величины, т. е. не у, х, a dy, dx. В его разъяснении заключаются современные определения производных и интегралов:

При обосновании метода пределов Ньютон апеллирует к механическим образам, к представлению о конечной, предельной скорости движения. Так входили в науку новые математические идеи, логическое обоснование которых потребовало усилий многих поколений математиков, вплоть до нашего времени. Идея бесконечности оказалась весьма коварной.

Но Ньютон избежал трудностей. Доказав вспомогательные геометрические леммы методом пределов, он в дальнейшем все предложения доказывал в духе старых геометров и логически безупречно. Однако эта безупречность достигалась за счет громоздкости и сложности доказательств. Последующим математикам пришлось выполнить работу по переводу механики на язык математического анализа.

В 1736 г. вышла «Механика, или Наука о движении, изложенная аналитически Леонардом Эйлером, членом Петербургской Академии наук», в которой были впервые написаны в дифференциальной форме уравнения механики и все математические расчеты велись на языке анализа. В 1788 г., через 100 лет после «Начал» Ньютона, вышла «Аналитическая механика» Лагранжа, в которой, как об этом с гордостью сообщал сам автор, не было ни одного чертежа. Так за 100 лет эволюционизировали математические методы механики.

Роль математики в развитии физики огромна. Современная теоретическая физика— сугубо математическая дисциплина, построенная на сложном математическом аппарате. Начало такому развитию теоретической физики было положено Галилеем, Декартом, Ньютоном и Лейбницем, выдающимися физиками и философами XVII столетия, философия активно участвовала в развитии новой науки. Работа, проделанная Бэконом, Декартом, Спинозой, Локком и другими философами XVII в., помогала развитию естествознания.

Естествоиспытатели и философы работали рука об руку над построением фундамента новой науки и нового мировоззрения. Поэтому глубоко не правы те, кто считает, что философия только мешала развитию науки, путаясь у ней в ногах и навязывая ей чуждые догмы. Передовая философская мысль всегда расчищала дорогу науке и, опираясь на достижения науки, сама развивалась и обогащалась. Догматизм, некритическое высокомерие всегда были врагами и науки и философии.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука