— Я понимаю, такие столпы науки, как Пафнутий Львович, не артисты, радующиеся любому успеху, что манне небесной, но ты бы видел, друг Алеша, с каким удовлетворением он приглаживал бороду, слушая мое сообщение. Нездоров, от нездоровья рассеян, а глаза так и засверкали искорками восторга.
О делах, имеющих непосредственное отношение к сыну, Крылов-старший полагал для себя говорить «в превосходной степени».
— Спасибо, отец, Пафнутию Львовичу твои слова наверняка доставили радость. Не странно ли, посуди сам: все западные ученые называют метод Чебышева «чудом анализа», а наши нерусские генералы от инженерии делают вид, что этого чуда не существует…
Всю жизнь Крылов заботливо, даже трогательно заботливо пропагандировал наследие Чебышева, принимал самое активное участие в издании его трудов, предпосылал их логически четкими вступлениями.
Пророк из буфета в Техническом обществе и обретя на плечи тяжелые эполеты, видимо, не рисковал высказывать собственное мнение. И предсказания пророка не сбылись, и пари он проиграл: поручик со временем был допущен в инженерные ведомства, мало того, он стал председателем Морского технического комитета. Но — в сторону таких пророков, как говорили в описываемое время.
Крылов не забыл своего выступления на собрании корабельных инженеров. Настойчиво, устно и печатно, отстаивал он вычисления по правилу Чебышева, а не Симпсона или, как стали его правильно называть под неустанным нажимом воинствующего чебышевца, «общепринятым способом расчета элементов корабля». Отстаивал и тогда, когда ему пригрозили «служебным несоответствием» за «недостаточно осмотрительную рекомендацию непринятого правила в читаемом в академии курсе».
Но борьба за умы и здравый смысл корабельных инженеров не затухала, а, напротив, все более разгоралась. Были, правда, и такие, кто, следуя логике буфетного ораторства, находился в состоянии ожидания, чем все это кончится. А фирма Крампа, выполнявшая заказы морского министерства, как писал Крылов в рапорте главному инспектору кораблестроения от 17 января 1902 года, «ввиду якобы неверности результатов вычисления по правилу Чебышева… запретила применение правила Чебышева на своем заводе. Поэтому, — заканчивал рапорт Крылов, — я оставлю за собой право изложить научную сторону этого дела в специальной печати».
И научная сторона огромного дела, подкрепленная подробнейшим перерасчетом по правилу Чебышева элементов броненосца «Ретвизан», восторжествовала.
В упомянутом рапорте были и такие констатирующие пункты:
«1. В применении к вычислению элементов броненосца «Ретвизан» правило Чебышева по отношению к водоизмещению дает результат в два раза более точный, нежели правило Симпсона, обычно применяемое, требуя при этом работы почти в 10 раз меньше…
5. Комиссия, наблюдающая за постройкой судов в Америке, признавая элементы, вычисленные по «общепринятому способу», за истинные, заблуждалась. Эти элементы еще более разнятся от истинных, нежели правильно вычисленные по правилу Чебышева. Этот акт Комиссии ввел в заблуждение и Морской технический комитет. Достаточно взглянуть на приложенную при сем таблицу вычисления элементов броненосца «Ретвизан» по правилу Чебышева и на таблицу тех же вычислений, приложенную к журналу № 49, чтобы видеть, насколько правило Чебышева сокращает работу и упрощает поверку вычислений…»
Так, от юношеской переписки у А.М. Ляпунова чебышевских лекций по теории вероятностей до активной защиты творческого наследия великого русского ученого, от лекций по математике в университете, от математических собеседований в академии с профессором Коркиным к воскрешению математической физики как науки полнокровной, к окончательному разрешению многих ее задач — вот кредо Крылова-математика.
Предваряя свою книгу по математической физике, отметившей было в первой половине XIX века свой закат после блестящего и бурного расцвета в XVIII, Крылов писал: «…я придерживался главным образом способов изложения «старых авторов»: Фурье, Пуанссона, Коши, для которых главная цель состояла в нахождении решения, а не в безукоризненно строгом его обосновании и не в доказательстве его существования в общем случае или при установленных необходимых ограничениях».
Крылов обращается к вопросам колебания — решение некоторых из них, с его точки зрения, имеет принципиальное значение в технике. В основе крыловского исследования метод Фурье, обобщаемый с учетом возникновения вынужденных колебаний. В математическом построении исследователя — неоднородные дифференциальные уравнения с двумя независимыми переменными. Вынуждающая сила при избранных Крыловым предельных условиях входит лишь в уравнение.