Неудивительно, что существует бесчисленное множество разновидностей белков. У каждого живого существа есть свой набор белков, у каждого человека в тысячах реакций могут принимать участие тысячи различных белков. Сложность строения белков и некоторых родственных им соединений обусловливает всю подвижность и многообразие жизни. Даже мельчайшее различие в расположении аминокислот в белковой молекуле, как я уже отмечал в главе 7, может оказать важное воздействие на организм.
Даже если бы белки из пищи усваивались организмом в неизменном виде, чего не происходит, поскольку их молекулы слишком крупны, то они не принесли бы нам пользы. Белки быка не похожи на белки человека, а белки травы не имеют ничего общего с белками быков. Проникновение из желудочно-кишечного тракта в кровь чужеродных белков может нанести вред организму и даже вызвать смерть. Об этом будет подробнее рассказано в следующих главах.
Однако если белковые молекулы, присутствующие в пище, разрушаются до аминокислот, а те, попав в организм человека, соединятся в иной последовательности, образуя белки человека, то все будет в порядке. Именно так и происходит.
Оказавшись в желудке, пища смешивается с кислым желудочным соком. Кислота вызывает медленный гидролиз белковых молекул, но в желудочном соке также содержится фермент пепсин, который ускоряет процесс гидролиза.
Соседние аминокислоты в цепи объединены
Подвергнувшись воздействию пепсина и кислоты, молекулы белков, будучи расщепленными на пока еще довольно крупные фрагменты, покидают желудок и попадают в тонкую кишку. Эти фрагменты представляют собой также аминокислотные цепочки, только эти цепочки относительно малы по сравнению с цепями белков. В отличие от белков они называются
В двенадцатиперстной кишке пептиды смешиваются с соком поджелудочной железы, который содержит два фермента — они, как и пепсин, являются
В итоге пептидные связи, устоявшие перед пепсином и медленно действующим желудочным соком, быстро разрушаются под воздействием трипсина и химотрипсина. Прежде чем пища пройдет в глубь тонкой кишки, она уже будет представлять смесь пептидов, состоящих из двух, трех или четырех аминокислот.
Кишечный сок содержит многообразие
Помните, что все ферменты, упомянутые в этой книге, а также тысячи других, о которых не было сказано, являются молекулами белков. Они состоят из одних и тех же аминокислот, но в различных пропорциях и расположенных по-разному. Это прекрасный пример многообразия белковых молекул, о котором я уже говорил в этой главе.
Всосавшись в кишечнике, аминокислоты, так же как и глюкоза, попадают в воротную вену. После приема пищи содержание аминокислот в крови удваивается по сравнению с обычным уровнем. Примерно через шесть часов после еды этот уровень восстанавливается.
Однако в течение этого времени количество аминокислот в крови остается довольно низким по сравнению с их количеством, попавшим в воротную вену, потому что в печени аминокислоты, как и глюкоза, усваиваются и изменяются. Так же как из молекул глюкозы образуются гигантские молекулы гликогена, из молекул аминокислот в печени образуются гигантские молекулы белков.
Правда, аналогия не полная. Если большая часть глюкозы откладывается в печени про запас в виде гликогена, белки в печени не откладываются. В организме нет места, где бы мог запастись белок в ожидании непредвиденных ситуаций. Все белки постоянно так или иначе работают.
Белки, созданные печенью из аминокислот, попавших в нее через воротную вену, переходят обратно в кровь и растворяются в плазме. Это так называемые
Плазменные белки подходят ко всем клеткам организма, и, как и глюкоза, захватываются ими. Клетки усваивают белки, расщепляют их до аминокислот и соединяют аминокислоты, образуя многообразие белков, которые необходимы нашему организму.