b) Математические дефиниции никогда не могут быть ошибочными. Действительно, так как в математике понятие впервые дается дефиницией, то оно содержит в себе именно то, что указывается в нем дефиницией. Но хотя по содержанию в ней не может быть ничего неправильного, тем не менее иногда, правда лишь изредка, она может иметь пробел в форме (в которую она облекается), а именно в отношении точности. Так, общепринятая дефиниция окружности как кривой линии, все точки которой находятся на одинаковом расстоянии от одной и той же точки (от центра), заключает в себе тот недостаток, что в ней без всякой нужды введено определение кривизны. В самом деле, должна быть особая, выводимая из дефиниции и легко доказуемая теорема о том, что всякая линия, все точки которой находятся на одинаковом расстоянии от одной и той же точки, есть кривая (ни одна часть ее не есть прямая). Аналитические дефиниции, наоборот, могут заключать в себе самые разнообразные ошибки или потому, что вносят признаки, в действительности не содержавшиеся в понятии, или потому, что им недостает полноты, составляющей суть дефиниции, так как мы не можем быть вполне уверены в завершенности своего расчленения. Поэтому философия не может подражать методу математики в построении дефиниций.
2. Об аксиомах. Аксиомы суть априорные синтетические основоположения, поскольку они непосредственно достоверны. Понятие нельзя синтетически и тем не менее непосредственно связать с другим понятием, так как для того, чтобы иметь возможность выйти за пределы понятия, нужно иметь какое-то третье, опосредствующее знание. А так как философия есть только познание разумом согласно понятиям, то в ней нельзя найти ни одного основоположения, которое заслуживало бы названия аксиомы. Наоборот, математика может иметь аксиомы, так как посредством конструирования понятий она может в созерцании предмета a priori и непосредственно связать его предикаты, как, например, [в утверждении], что три точки всегда лежат в одной плоскости. Синтетическое же основоположение из одних лишь понятий, например утверждение, что все, что происходит, имеет причину, никогда не может быть непосредственно достоверным, так как я вынужден искать что-то третье, а именно условие временного определения в опыте, и не могу познать такое основоположение прямо, непосредственно из одних лишь понятий. Следовательно, дискурсивные основоположения- это совсем не то, что интуитивные, т. е. что аксиомы. Первые всегда нуждаются еще в дедукции, тогда как вторые вполне могут обойтись без нее; и так как именно поэтому интуитивные основоположения наглядны, философские же основоположения, несмотря на всю свою достоверность, никогда не могут претендовать на наглядность, то синтетические положения чистого и трансцендентального разума бесконечно далеки от того, чтобы быть столь же очевидными (как это настойчиво утверждают), как положение дважды два четыре. Правда, в аналитике, приводя таблицу основоположении чистого рассудка, я упоминал также о некоторых аксиомах созерцания; однако указанное там основоположение само не есть аксиома, а служит только для того, чтобы указать принцип возможности аксиом вообще, и само было лишь основоположением, исходящим из понятий. Действительно, в трансцендентальной философии даже возможность математики должна быть разъяснена. Итак, философия не имеет никаких аксиом и никогда не может предписывать столь безоговорочно свои основоположения a priori, а должна стараться обосновать свое право на них посредством основательной дедукции.