Огромные успехи, достигаемые разумом посредством математики, естественно, возбуждают надежду, что если не сама математика, то во всяком случае ее метод достигнет успеха также и вне области величин, так как она сводит все свои понятия к созерцаниям, которые она может дать a priori и посредством которых она может, так сказать, овладеть природой, тогда как чистая философия со своими дискурсивными априорными понятиями стряпает учения о природе, не будучи в состоянии сделать реальность своих понятий a priori созерцательной и тем самым достоверной. К тому же у мастеров математического искусства нет недостатка в уверенности в себе, да и общество возлагает большие надежды на их ловкость, лишь бы они попробовали взяться за это дело. Так как они вряд ли когда-либо философствовали по поводу своей математики (трудное дело!), то специфическое различие между указанными двумя видами применения разума вообще не приходит им в голову. Ходячие, эмпирически применяемые правила, которые они заимствуют у обыденного разума, они считают аксиомами. Откуда же получаются понятия пространства и времени, которыми они занимаются (как единственными первоначальными величинами),-этот вопрос вовсе не беспокоит их, и вообще им кажется бесполезным исследовать происхождение чистых рассудочных понятий и вместе с тем сферу их применения; они довольствуются тем, что пользуются ими. Во всем этом они правы, если только они не выходят за указанные им границы, а именно за пределы природы. В противном случае они незаметно переходят из области чувственности на непрочную почву чистых и даже трансцендентальных понятий (instabilis tellus, innabilis unda), где нельзя ни стоять, ни плавать, а можно только сделать несколько слабых шагов, от которых время не сохраняет ни малейшего следа, между тем как в математике они пролагают широкий путь, которым с уверенностью могут идти также и отдаленнейшие поколения.
Так как мы считаем своим долгом точно и с уверенностью определить границы чистого разума в его трансцендентальном применении, между тем как такого рода стремление обладает той особенностью, что, несмотря на самые настойчивые и ясные предостережения, все еще надеются, пока окончательно не отказываются от своего намерения, проникнуть за пределы опыта, в заманчивые области интеллектуального,-то необходимо отнять как бы последний якорь у богатой воображением надежды и показать, что следование математическому методу в этом роде знания не может дать никакой выгоды, разве только то, что тем яснее откроются его собственные недостатки: хотя геометрия и философия подают друг другу руку в естествознании, тем не менее они совершенно отличны друг от друга и потому не могут копировать методы друг у друга.
Основательность математики зиждется на дефинициях, аксиомах и демонстрациях. Я ограничусь указанием на то, что ничто из перечисленного в том значении, какое оно имеет в математике, неприменимо в философии и не может быть предметом подражания, что геометр, пользуясь своим методом, может строить в философии лишь карточные домики, а философ со своим методом может породить в математике лишь болтовню; между тем задача философии именно в том и состоит, чтобы определять свои границы, и даже математик, если только его талант от природы не ограничен и выходит 3d рамки своего предмета, не может отвергнуть предостережений философии или пренебречь ими.