«Перельман — настоящая загадка», — сказал Виллани. Я спросил, читал ли он доказательство Перельмана. «Приложив немного усилий, я смог в нем разобраться. Это не так уж далеко от моей области, — ответил Виллани. — Многие считают, что, если в математике есть доказательство, мы должны быть готовы сразу же определить его правильность или ошибочнось. Но это совсем не так». По словам Виллани, для того чтобы понять ход мыслей Перельмана, требуется много времени.
Перельман — один из шести россиян — лауреатов Филдсовской премии начиная с 1994 года. За этот период в России было больше ее обладателей, чем в любой другой стране. Франция занимает второе место — у нее пять обладателей премии. Однако если включить в этот список бельгийца, который работал во Франции, а также вьетнамца и русского, имеющих французское гражданство, то Франция выйдет в лидеры по количеству математиков, получивших Филдсовскую премию, — 8 из 18. Кроме того, все французские обладатели премии работают в Париже. В этом городе больше профессиональных математиков, чем в любом другом. «Около тысячи [математиков] живут здесь, — сказал Виллани. — Потрясающая цифра!» Одна из причин того, почему во Франции столько лауреатов премии, — первоклассная система образования: все эти математики, кроме одного, учились в престижнейшем учебном заведении — Высшей нормальной школе, в которой на курс математики принимают всего 41 или 42 студентов в год. Однако история также играет в этом свою роль. Великая (или последняя) теорема Ферма, декартова система координат, треугольник Паскаля, преобразования Фурье — вся история математики испещрена именами французов, являющихся предметом национальной гордости Франции. Но ни один из обладателей Филдсовской премии не стал в своей стране такой публичной фигурой, как Седрик Виллани во Франции.
Недавно Виллани вступил в дискуссию с несколькими физиками по поводу Николя Карно (1796–1832), который первым сформулировал теоретические основы работы паровой машины. «У Карно ни на секунду не возникало желания построить такую машину. Ему не было до этого дела! — воскликнул Виллани. — Да, он был французом! Англичане стремятся
Интегрирование — это раздел исчисления, связанный с расчетом площади, поэтому, когда в 1876 году шотландский инженер Джеймс Томас изобрел устройство для ее измерения, он назвал его «интегратором». Это устройство было усовершенствованной версией планиметра — научного инструмента XIX столетия, которым чаще всего пользовались геодезисты для вычисления площадей фрагментов карты, имеющих неправильную форму. Планиметр состоял из механизма с колесом и диском, закрепленного на рычаге таким образом, чтобы после перемещения иглы по периметру измеряемой области механизм давал точное значение ее площади.
Томпсон показал схему интегратора младшему брату Уильяму, впоследствии ставшему лордом Кельвином, и тот сразу же разглядел потенциал устройства в плане механизации вычислений. Поскольку интегрирование — одна из составляющих дифференциального уравнения, Кельвин понял, что интеграторы можно использовать и в качестве одного из элементов устройства для решения дифференциальных уравнений. Кельвин стразу же применил интеграторы в своем «гармоническом анализаторе приливов» — изобретенном им аппарате для расчета времени наступления приливов.
В 1927 году на основании идей Кельвина по применению ряда интеграторов для решения дифференциальных уравнений Вэнивар Буш из Массачусетского технологического института сконструировал так называемый дифференциальный анализатор — вычислительный прибор, предназначенный исключительно для решения дифференциальных уравнений. Это огромное устройство весом 100 тонн состояло из восьми механических интеграторов, установленных на платформе величиной с комнату, и стало первым, способным делать сложные математические расчеты, опередив первые цифровые электронные компьютеры на целое десятилетие.
Дифференциальный анализатор представлял собой аналоговое вычислительное устройство, поскольку его механические составляющие были функционально подобны взаимодействиям в той физической системе, которую он моделировал. Устройство Буша служило основой многих аналоговых компьютеров вплоть до 70-х годов ХХ столетия, когда в результате наступления цифровой эры и аналоговые вычислительные устройства, и логарифмические линейки вышли из употребления.