Уравнение Больцмана имеет ряд достаточно простых областей применения, таких как самолетостроение, где оно помогает определить, что происходит с самолетами, когда они пролетают сквозь скопления газов. Именно практическая полезность уравнения Больцмана заинтересовала Виллани, когда он приступил к написанию докторской диссертации. Но по мере углубления в изучение уравнения Больцмана его красота все больше пленяла Виллани. Он сравнивает уравнение со скульптурой Микеланджело: «Небезупречное, утонченное и элегантное, но очень человечное, многое испытавшее, пронизанное силой энергии мироздания. В этом уравнении можно услышать рев частиц, наполненных яростью». Виллани добавил, что предпочитает потратить годы на анализ хорошо известных уравнений, пытаясь найти в них нечто новое, чем изобретать новые концепции. «Именно это мне нравится, и именно это — одна из составляющих общей позиции, которая гласит: “Послушайте! Физика высоких энергий, бозон Хиггса, теория струн или что-то в этом роде — все это очень увлекательно, но не забывайте, что мы до сих пор не до конца понимаем ньютоновскую механику”. Остается еще много, очень много нерешенных задач». Он показал мне дифференциальное уравнение с частными производными в какой-то книге. «У этого уравнения есть гладкие решения? Никто, черт возьми, не знает этого!» Он пожал плечами и нахмурил лоб.
На стене позади Виллани висит портрет его любимой певицы Катрин Рибейро, исполняющей песни в стиле «прогрессивный рок», — руки вытянуты в стороны, кулаки сжаты. На столе стоит бюст французского математика Анри Пуанкаре, бородатого и мрачного. «Именно в этом состоит принцип двойственности, приводящий все в движение, заставляет думать», — объясняет Виллани. У Пуанкаре, который жил на рубеже XIX и XX веков, была репутация последнего математика, в совершенстве владеющего всеми разделами своей дисциплины, — это одна из причин того, почему в его честь назван институт, возглавляемый Виллани. В наше время, по утверждению ученого, один человек способен понять лишь треть областей математики, да и то в самом общем смысле. В совершенстве никто не может овладеть более чем пятью процентами знаний о математике. По мере расширения сферы, которую охватывает эта наука, башни ее знаний становятся все выше и шире, а это значит, что каждый математик должен выбрать область специализации как можно раньше. В итоге математика становится дисциплиной, где чрезвычайно большую роль играет сотрудничество. Стереотипное представление о математиках как об эксцентричных отшельниках больше не соответствует действительности, если когда-либо вообще так было на самом деле. «Математика часто оказывается на стыке разных областей, а в этом случае лучше брать двух специалистов, по одному с каждой стороны». Виллани убежден, что сейчас в математике наступил период активного перекрестного обогащения. «Сначала у вас есть одна область, затем она делится на две, каждая из них проходит процесс специализации, после чего вы получаете ряд различных подобластей и т. д. Затем они снова пересекаются. Когда происходит такое скрещивание после специализации, это очень интересно. Мы живем во времена, когда разные области математики объединяются между собой, а также пересекаются с другими научными областями, причем сейчас этот процесс проходит гораздо эффективнее, чем в прошлом».
Анри Пуанкаре чаще всего вспоминают в связи со сформулированной им в 1904 году и известной под названием «гипотеза Пуанкаре» гипотезой о топологических свойствах сферы. (Она слишком сложна для того, чтобы объяснить ее на доступном для понимания языке одним или даже несколькими предложениями.) Почти целое столетие эта гипотеза была одной из самых знаменитых нерешенных задач в математике, и только в 2002 году 36-летний россиянин разместил ее доказательство в одном из интернет-архивов. К тому времени, когда другие математики проверили правильность его расчетов, Григорий Перельман прекратил заниматься математикой. Он стал затворником, жил с матерью в квартире на окраине Петербурга — и вернул к жизни стереотип эксцентричного отшельника. В 2006 году все математическое сообщество было потрясено отказом Перельмана от Филдсовской премии под предлогом, что он не нуждается ни в каком признании, кроме одного: чтобы люди поняли, что его доказательство правильно. Этот поступок повлек за собой самую горячую полемику за все время, прошедшее с момента учреждения премии в 1936 году. В 2010 году Математический институт Клэя присудил Перельману премию в размере 1 миллион долларов за доказательство гипотезы Пуанкаре, но он отказался и от нее. Невостребованная награда Перельмана, стеклянная табличка на каменной основе, стоит сейчас на полке в кабинете Виллани, а призовые деньги направлены на финансирование новой кафедры в Институте Анри Пуанкаре.