Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Выше уже шла речь о том, что уравнение y = ax, где a — положительное число, описывает кривую экспоненциального роста. Мы можем представить его так, чтобы в нем присутствовало число e. Математические свойства показателя степени таковы, что член уравнения ax можно записать в виде ekx, где k — некоторое положительное число. Например, кривая последовательности, каждый член которой в два раза больше предыдущего, описывается уравнением y = 2x, но его можно записать и по-другому: y = e0,69x. Аналогичным образом кривая последовательности, каждый член которой втрое больше предыдущего, представлена уравнением y = 3x, что эквивалентно y = e1,099x. Математики предпочитают записывать уравнение y = ax в виде y = ekx, поскольку число e олицетворяет экспоненциальный рост в его чистом виде. Это число упрощает уравнение, делает его элегантнее и облегчает расчеты. Экспоненциальная константа e — важнейший элемент математики роста.

π — первая константа, с которой мы знакомимся в школе; число e изучают гораздо позже, причем только те, кто специализируется на математике. Однако на уровне университетского образования число e занимает доминирующее положение. По чистой случайности вышло так, что e — это также самая распространенная буква в английском языке. Математическая роль числа e имеет свою аналогию в лингвистике. Когда в уравнении присутствует число e, это свидетельствует о расцвете экспоненциального роста, а цветение — признак зарождения жизни. Точно так же буква e привносит жизнь в письменный язык, превращая слова со смежными согласными в удобопроизносимое сочетание звуков.

У экспоненциального роста есть свой антипод — экспоненциальный спад. В его ходе величина многократно уменьшается в одной и той же пропорции. Например, экспоненциальный спад демонстрирует последовательность, каждый член которой в два раза меньше предыдущего:

1, , , , , , …

В случае экспоненциального спада эквивалент концепции периода удвоения — это фиксированный промежуток времени, необходимого для того, чтобы величина уменьшилась в два раза. В частности, в физике этот промежуток обозначается термином «период полураспада». Количество радиоактивных частиц в радиоактивном веществе сокращается по экспоненциальному закону, причем тоже с огромными различиями: период полураспада водорода-7 составляет 0,000000000000000000000023 секунды, тогда как кальция-48 — 40 000 000 000 000 000 000 лет.

Если говорить о примерах из повседневной жизни, то разность между температурой горячего чая и температурой чашки, в которую вы его только что налили, уменьшается по экспоненциальному закону. То же самое можно сказать и о снижении атмосферного давления по мере восхождения на гору.

Кривая чистого экспоненциального спада, показанная на рисунке ниже, описывается уравнением y = , которое можно представить и в такой форме: y = e—x. В случае экспоненциального спада градиент всегда имеет отрицательное значение и является величиной, обратной высоте. Кривая спада — это та же экспоненциальная кривая y = ex, отраженная вертикальной осью. У этой кривой есть одно интересное свойство: конечная площадь заштрихованной на рисунке области, ограниченной кривой и вертикальной и горизонтальной осями, равна 1, хотя длина этой области бесконечна, поскольку кривая никогда не достигнет горизонтальной оси.

Кривая экспоненциального спада y =

В майском выпуске журнала Acta Eruditorum 1690 года первооткрыватель числа e Якоб Бернулли снова вернулся к рассмотрению вопроса, над которым математики ломали голову уже целое столетие. Какую геометрическую форму образует кусок шпагата, закрепленный в обоих концах и провисающий под собственной тяжестью? Эта кривая (названная цепной линией — catenary, от латинского слова catena, «цепь») образуется в случае, когда тот или иной материал провисает под действием силы тяжести, как показано на рисунке ниже. Это может быть провисание электрического кабеля, ожерелья, скакалки или бархатного шнура. Поперечное сечение вздымающегося паруса — тоже цепная линия, развернутая на 90 градусов, поскольку ветер дует горизонтально, тогда как сила тяжести действует вертикально. Однако в отличие от многих других сложных математических задач, которые ученые ставили в XVII столетии, Якоб не знал ответа на этот вопрос до того, как поставил его. Год спустя ответ все еще ускользал от него. А через какое-то время решение задачи нашел младший брат Якоба Иоганн. Вы, наверное, подумали, что это стало поводом для большой радости в доме Бернулли, но на самом деле все было далеко не так. Семья Бернулли считалась одной из самых неблагополучных в математике.

Математическое украшение: цепная кривая

Перейти на страницу:

Похожие книги