Автор направляет свет своего факела на конус и видит его отражение в ракетах, планетах и башнях. Он познаёт радость катания шаров — как погруженных в чернила в Италии эпохи Возрождения, так и отскакивающих от бортика бильярдного стола в Нью-Йорке
Давайте возьмем прямоугольный треугольник и модифицируем его, вращая вокруг одной из меньших сторон. Полученный трехмерный объект — это конус: геометрическое тело с основой в виде круга и острой вершиной. Такие объемные фигуры не очень практичны: их нельзя катать как шары или складывать друг на друга как кубики. Тем не менее в прошлом конус активно использовался в моделях головных уборов. Вьетнамские крестьяне, работающие на рисовых полях, волшебники, отстающие ученики — все они носили остроконечные шляпы. У древних греков среди ремесленников и простого люда был популярен конусообразный головной убор из войлока или кожи —
Разрежьте конус ножом — и пол
Окружность — это замкнутая плоская кривая, все точки которой равноудалены от центра. Привяжите нить к карандашу и воткнутой в бумагу булавке, натяните нить — и сможете нарисовать окружность. А теперь сделайте из нити петлю и зафиксируйте ее на двух булавках, как показано на рисунке ниже. Путь, который пройдет карандаш, туго натягивающий нить, — это эллипс. Все окружности имеют одинаковую форму, а это значит, что при их уменьшении или увеличичении полученная в итоге окружность будет идентична любой другой окружности. Эллипсы, напротив, бывают разной формы, зависящей от положения булавок, или фокусов. Чем ближе фокусы друг к другу, тем больше эллипс напоминает окружность. Когда фокусы совпадают, эллипс превращается в окружность. На самом деле в математике окружность считается частным случаем эллипса с совпадающими фокусами.
При взгляде на окружность под углом мы видим эллипс. Колеса, монеты, часы, обручи, кольца и диски всегда выглядят как эллипсы, если только они не находятся параллельно лицу, что бывает нечасто. Кроме того, для любого эллипса есть такой угол зрения, под которым он похож на окружность. (Отодвиньте эту книгу в сторону и поверните ее от себя, чтобы увидеть любой из эллипсов на этих страницах как окружность.)
Эллипс обладает одним геометрическим свойством, представляющим исторический интерес для любителей игр в закрытых помещениях. Если стол для игры в американский бильярд сконструирован в виде эллипса, то шар, посланный из одного фокуса, всегда отскакивает от борта и направляется ко второму фокусу, независимо от того, в каком направлении сделан удар по шару. Эта интересная особенность обусловлена следующим свойством эллипса: прямая линия, проведенная от одного фокуса к точке на эллипсе, образует с касательной такой же угол, что и линия, проведенная из этой точки к другому фокусу, как показано на рисунке слева. Когда вы наносите удар по шару, отбивая его на край стола, угол движения шара в момент его приближения к борту равен углу в тот момент, когда шар отскакивает от борта, — это известно любому, кто когда-либо натирал мелом конец кия[71]. Следовательно, если ударить по шару в одной точке фокуса, он обязательно отскочит в направлении другого фокуса.