Леонард Эйлер был спокойным человеком и хорошим семьянином, что опровергало распространенное представление о гениальных математиках как о людях, испытывающих трудности в общении. Он имел поистине феноменальную память: говорят, он мог вспомнить все десять тысяч строк «Энеиды» Вергилия. Еще более феноменальной была его работоспособность. Ни один математик так и не смог сравниться с Эйлером по количеству научных работ; ученый писал в среднем по 800 страниц в год. Когда он умер в 1783 году, в возрасте 76 лет, на его рабочем столе осталось столько материалов, что его статьи публиковались в научных журналах еще полстолетия. У Эйлера всегда было плохое зрение; к тридцати годам он перестал видеть левым глазом, а к шестидесяти — правым. Некоторые самые важные труды Эйлер диктовал, уже будучи слепым, целой группе секретарей, пытавшихся изо всех сил за ним поспевать. По их словам, Эйлер творил математику быстрее, чем это можно было записывать.
Однако Эйлера на фоне других математиков выделяет не только количество, но еще и качество, и разнообразие исследований. «Читайте, читайте Эйлера, — призывал французский математик Пьер-Симон Лаплас. — Он — наш общий учитель». Эйлер внес значительный вклад практически во все области науки того времени, от теории чисел до механики, от геометрии до теории вероятностей. Кроме того, он открыл и совершенно новые области. Работы Эйлера оказались настолько преобразующими, что его словарь символов был принят в математическом сообществе. Например, именно благодаря Эйлеру мы используем символы π и
Эйлер сделал одно неожиданное открытие в отношении числа
Факториалы начинаются так:
(0! = 1 по соглашению)
1! = 1
2! = 2 × 1 = 2
3! = 3 × 2 × 1 = 6
4! = 4 × 3 × 2 × 1 = 24
…
10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3 628 800
…
Факториалы растут очень быстро. К тому времени, когда мы получим 20!, значение будет исчисляться квинтиллионами. Возможно, немецкие математики XIX века решили использовать для этой операции восклицательный знак потому, что именно так хотели продемонстрировать феноменальную скорость роста факториала. В некоторых английских текстах того времени предлагалось даже обозначать
Факториалы чаще всего применяются в процессе расчета комбинаций и перестановок. Например, сколько существует способов рассадить определенное количество людей на таком же количестве стульев? Разумеется, один человек может сесть на одном стуле только одним способом. Когда есть два человека и два стула, появляется два варианта выбора, две перестановки — AB и BA. В случае трех человек и трех стульев таких способов уже шесть: ABC, ACB, BAC, BCA, CAB и CBA. Однако вместо перечисления всех возможных перестановок можно использовать общий метод поиска результата. У первого человека есть три варианта выбора стульев, у второго — два, у третьего — один; следовательно, общее количество вариантов равно 3 × 2 × 1 = 6. Применив этот же метод к четырем людям и четырем стульям, мы найдем общее число вариантов так: 4 × 3 × 2 × 1 = 4! = 24. Другими словами, при наличии
Но давайте вернемся к числу
В виде равенства это можно записать так:
Что эквивалентно следующему:
Начнем подсчитывать сумму член за членом:
1
2
2,5
2,6666…
2,7083…
2,7166…