Если же говорить более конкретно, то большой вклад в развитие астрофизики внесла гонка вооружений. Многие численные гидродинамические модели, физические базы данных попадали в астрофизику из Лос-Аламоса и других подобных учреждений. Не для астрофизических нужд разрабатывались изначально такие прорывные технологии, как адаптивная оптика и детекторы жёсткого излучения. Некоторые важные астрофизические явления и объекты (гамма-всплески, инфракрасные тёмные облака) были обнаружены при помощи военных спутников.
- Каждая наука имеет свою методологию. Какие есть особенности у методологии астрофизики?
- Можно, пожалуй, выделить две ключевые особенности: невозможность проведения запланированного эксперимента и возможность наблюдения исследуемых объектов только с одной стороны. Физик (как правило) имеет возможность так построить эксперимент, чтобы в нём наиболее выпукло проявлялся какой-то специфический процесс. В астрофизике эксперимент ставит Природа, которая нимало о нуждах исследователя не заботится. Допустим, физик хочет в деталях исследовать колебания маятника. Он сделает его из немагнитного материала, поместит на жёстком подвесе в суперизолированное помещение, откачает воздух, поставит десять камер, чтобы следить за маятником с разных ракурсов. В астрофизике тот же маятник будет сделан из материала с неизвестными магнитными свойствами, помещён в магнитное поле, подвешен на резинке, с одной стороны на него будет налетать поток газа, с другой - космические лучи, и наблюдать всё это можно будет только с одной стороны, как правило сбоку в плоскости колебаний.
Ещё один важный фактор - разнообразные эффекты наблюдательной селекции, суть которых сводится к тому, что внимание наблюдателя привлекают, в первую очередь, наиболее яркие и, как следствие, наименее типичные объекты.
Из-за этих ограничений в астрофизике к теоретической интерпретации наблюдений приходится подходить особенно жёстко. В частности, обязательно необходимо проверять, насколько предлагаемое объяснение согласуется с данными из других отраслей астрофизики. Это в общем тоже ложится на учёного дополнительным бременем: он не может позволить себе разбираться только в своей узкой области.
- В астрономии много разделов, какой из них самый сложный в смысле получения информации?
- Да в общем-то ни один из этих разделов особой лёгкостью не отличается. Но самые значительные сложности, наверное, у космологов. Им приходится иметь дело с очень большим объектом, и для выявления каких-то закономерностей необходимо с высоким качеством наблюдать если не всё небо, то по крайней мере значительные его участки, причём с
использованием космических обсерваторий. Эта задача всё ещё остаётся очень ресурсоёмкой.
- Каким инструментарием обладает астрофизика? Каким образом, наблюдая свет от удаленных звёзд, астрофизики определяют их параметры?
- Практически единственный источник информации о космических объектах - это электромагнитное излучение. Конечно, есть ещё космические лучи и нейтрино, но по информативности они со светом конкурировать не смогут ещё очень долго. Поэтому в основе астрофизического инструментария лежит, с одной стороны, необходимость зарегистрировать электромагнитное излучение, с другой стороны, необходимость понять, как оно было сгенерировано.
К счастью, электромагнитное излучение буквально напичкано информацией. Эта информация зашифрована в виде спектра - распределения энергии излучения по частотам. Общая форма спектра зависит от температуры объекта: чем объект горячее, тем дальше максимум его излучения сдвинут в область больших частот (очень горячие объекты светят в рентгеновском и гамма-диапазонах, очень холодные - в инфракрасном и миллиметровом диапазонах), сдвиг спектральных линий относительно "лабораторного" положения говорит о скорости движения вещества по лучу зрения, ширина спектральных линий - о температуре и плотности вещества. По интенсивности различных линий одного и того же элемента можно определить его содержание и состояние ионизации.
- Предположим, природу звёзд еще можно постичь. А как быть с более абстрактными явлениями, такими, как кривизна пространства?