В начале XIX столетия французский математик Жан-Батист Фурье (Jean-Baptiste Fourier) доказал, что любую обычную периодическую функцию g(t) с периодом T можно представить в виде суммы ряда (возможно, бесконечного) синусов и косинусов:
где f = 1/T — частота основной гармоники, a
Можно представить, что информационный сигнал конечной длительности (а все информационные сигналы именно такие) повторяет весь паттерн снова и снова до бесконечности (то есть интервал от T до 2T идентичен интервалу от 0 до T и т.д.).
Вычислить амплитуды a
то остается только один из членов суммы: a
Сигналы с ограниченным диапазоном частот
Гармонический анализ можно применить к обмену данными, поскольку на практике каналы влияют на сигналы различной частоты по-разному. Рассмотрим конкретный пример: передачу ASCII-символа «b», закодированного в виде 8-битного числа. Передаваемая комбинация битов имеет вид 01100010. Слева на илл. 2.12 (а) показан выходной сигнал передающего устройства в виде напряжения электрического тока. При гармоническом разложении этого сигнала получаем следующие коэффициенты:
Корень из среднеквадратической амплитуды,
Ни одно средство связи не может передавать сигналы без потери в процессе хотя бы небольшой доли мощности. Если уменьшить все гармоники Фурье в равной степени, амплитуда итогового сигнала уменьшится, но он не исказится; то есть он по-прежнему будет иметь аккуратную прямоугольную форму, как на илл. 2.12 (а). К сожалению, любое передающее оборудование уменьшает различные гармоники в разной степени, вследствие чего возникает искажение сигнала.
Илл. 2.12. (а) Бинарный сигнал и его среднеквадратичные амплитуды Фурье. (б)–(д) Последовательные аппроксимации исходного сигнала
Обычно амплитуды передаются по проводам практически в неизменном виде от нуля до некой частоты f
Пропускная способность — физическое свойство среды передачи, зависящее от конструкции, толщины, длины и материала провода или оптоволокна, а также других факторов. Для ее дальнейшего ограничения нередко применяются фильтры. Например, в беспроводных каналах 802.11 обычно используется диапазон в 20 МГц, поэтому радиоустройства, работающие по стандарту 802.11, фильтруют ширину полосы пропускания сигнала, чтобы привести ее к этим рамкам (хотя в некоторых случаях применяется диапазон в 80 МГц).
Приведем еще один пример: традиционные (аналоговые) телевизионные каналы (как проводные, так и беспроводные) занимают полосу в 6 МГц каждый. Такая фильтрация позволяет большему числу сигналов совместно использовать одну область спектра, что повышает общую эффективность системы. Это значит, что диапазон частот для некоторых сигналов начинается не с нуля, а с более высокого значения. Впрочем, это не важно. Полоса пропускания остается шириной диапазона переданных частот, а передаваемая информация зависит только от нее, а не от начальной и конечной частот. Сигналы, охватывающие частоты от 0 до максимальной частоты, называются немодулированными (baseband signals)19. А сигналы, смещенные по спектру на более широкий диапазон частот, как в случае всех проводных передач данных, называются полосовыми сигналами (passband signals).