Читаем Компьютерные сети. 6-е изд. полностью

В начале XIX столетия французский математик Жан-Батист Фурье (Jean-Baptiste Fourier) доказал, что любую обычную периодическую функцию g(t) с периодом T можно представить в виде суммы ряда (возможно, бесконечного) синусов и косинусов:

(2.2)

где f = 1/T — частота основной гармоники, an и bn — амплитуды n-х гармоник (членов ряда), а с — константа, определяющая среднее значение функции. Подобное разложение называется рядом Фурье (Fourier series). Функцию можно восстановить по ее ряду Фурье. Другими словами, зная период T и амплитуды, можно восстановить исходную функцию времени путем вычисления сумм уравнения (2.2).

Можно представить, что информационный сигнал конечной длительности (а все информационные сигналы именно такие) повторяет весь паттерн снова и снова до бесконечности (то есть интервал от T до 2T идентичен интервалу от 0 до T и т.д.).

Вычислить амплитуды an для любой заданной функции g(t) можно путем умножения обеих сторон уравнения (2.2) на sin(2πkft) и взятия интеграла по отрезку от 0 до T. А поскольку

то остается только один из членов суммы: an. Сумма с коэффициентами bn исчезает полностью. Аналогично, умножив уравнение (2.2) на cos(2πkft) и взяв интеграл по отрезку от 0 до T, можно определить bn. Чтобы найти c, достаточно проинтегрировать обе половины уравнения в его первоначальном виде. В результате этих операций получаем:

Сигналы с ограниченным диапазоном частот

Гармонический анализ можно применить к обмену данными, поскольку на практике каналы влияют на сигналы различной частоты по-разному. Рассмотрим конкретный пример: передачу ASCII-символа «b», закодированного в виде 8-битного числа. Передаваемая комбинация битов имеет вид 01100010. Слева на илл. 2.12 (а) показан выходной сигнал передающего устройства в виде напряжения электрического тока. При гармоническом разложении этого сигнала получаем следующие коэффициенты:

Корень из среднеквадратической амплитуды, , для нескольких первых членов разложения приведен в правой части илл. 2.12 (а). Эти значения интересны тем, что их квадраты пропорциональны передаваемой на соответствующей частоте энергии.

Ни одно средство связи не может передавать сигналы без потери в процессе хотя бы небольшой доли мощности. Если уменьшить все гармоники Фурье в равной степени, амплитуда итогового сигнала уменьшится, но он не исказится; то есть он по-прежнему будет иметь аккуратную прямоугольную форму, как на илл. 2.12 (а). К сожалению, любое передающее оборудование уменьшает различные гармоники в разной степени, вследствие чего возникает искажение сигнала.

Илл. 2.12. (а) Бинарный сигнал и его среднеквадратичные амплитуды Фурье. (б)–(д) Последовательные аппроксимации исходного сигнала

Обычно амплитуды передаются по проводам практически в неизменном виде от нуля до некой частоты fc (измеряемой в герцах), а все частоты сверх этой частоты среза ослабляются. Ширина диапазона частот, передаваемых практически без затухания, называется шириной полосы пропускания, или просто пропускной способностью (bandwidth). На практике частота среза не настолько четко выражена, так что нередко упомянутая частота указывается в виде диапазона от 0 до частоты, на которой мощность полученного сигнала падает вдвое.

Пропускная способность — физическое свойство среды передачи, зависящее от конструкции, толщины, длины и материала провода или оптоволокна, а также других факторов. Для ее дальнейшего ограничения нередко применяются фильтры. Например, в беспроводных каналах 802.11 обычно используется диапазон в 20 МГц, поэтому радиоустройства, работающие по стандарту 802.11, фильтруют ширину полосы пропускания сигнала, чтобы привести ее к этим рамкам (хотя в некоторых случаях применяется диапазон в 80 МГц).

Приведем еще один пример: традиционные (аналоговые) телевизионные каналы (как проводные, так и беспроводные) занимают полосу в 6 МГц каждый. Такая фильтрация позволяет большему числу сигналов совместно использовать одну область спектра, что повышает общую эффективность системы. Это значит, что диапазон частот для некоторых сигналов начинается не с нуля, а с более высокого значения. Впрочем, это не важно. Полоса пропускания остается шириной диапазона переданных частот, а передаваемая информация зависит только от нее, а не от начальной и конечной частот. Сигналы, охватывающие частоты от 0 до максимальной частоты, называются немодулированными (baseband signals)19. А сигналы, смещенные по спектру на более широкий диапазон частот, как в случае всех проводных передач данных, называются полосовыми сигналами (passband signals).

Перейти на страницу:

Похожие книги