Амеры, к которым атомисты сводили геометрические построения, казались не в меру строгим философам горой на пути землемера.
Эта точка зрения была даже облечена в форму принципа, определяющего математическое мировоззрение античности: «Все научные системы истинны лишь постольку, поскольку они не основаны на предположении, что непрерывное состоит из неделимых».
Архимед же нарушал этот принцип, пользуясь запрещенным методом разделения сложных фигур на элементарные.
Вот почему Архимед не пропагандировал свой способ. Вот почему после нескольких робких попыток заявить о нем он замолчал. Не понимая огромную мощь этих методов, он втайне пользовался ими. Однако при публикации облекал полученные результаты в форму общепринятых доказательств.
И вот теперь Архимед увидел, что он не одинок. Что такой мудрец, как Демокрит, при помощи «самых маленьких величин», амер, получал поистине чудесные результаты!
Архимед понял всю глубину заблуждения Платона — ведь тот знал метод Демокрита («что касается отношений линий и площадей, то разве мы, эллины, не думаем, что их возможно измерять одни другими?») и отказался от него («но это никак и никаким образом невозможно…»)!
Не близорукость ли это? Не деспотизм?
Пусть методы Демокрита не строги, но они плодотворны. Архимед убедился в этом на примере собственных работ. Он не будет больше молчать. Он не должен далее таить свой метод. Его нужно сообщить хотя бы математикам. И Архимед пишет «Послание к Эратосфену о механических теоремах».
После традиционной фразы: «Архимед Эратосфену желает благоденствовать!», он излагает программу книги: Я уже посылал тебе найденные мною теоремы, предоставив найти их доказательства… В книге мы опишем, что было обнаружено нами при помощи механики… в конце же книги напишем геометрические доказательства тех теорем».
Цель ясна — на примерах показать мощь механических методов, а затем доказать их справедливость и законность, подтвердив верность полученных результатов при помощи безупречных традиционных методов.
Это намерение — не просто шаг от одного метода к другому. Это был бунт против традиции.
Бунт Архимеда
Бунт Архимеда ограничивается чисто математическими проблемами. Он впервые поднимает принципиальный методический вопрос о роли своих методов в развитии математики. Теперь, когда он получил опору в трудах древнего мудреца, когда он перестал чувствовать себя одиноким, он хочет доказать полезность своих методов. Он не только не стыдится их огласить, как это было раньше, а стремится подчеркнуть их возможности.
Дадим же слово Архимеду, пусть оно и покажется читателю несколько тяжеловесным. Он пишет Эратосфену:
«Зная, что ты являешься ученым человеком и по праву занимаешь выдающееся место в философии, а также при случае можешь оценить и математическую теорию, я счел нужным написать тебе и в этой же книге изложить некоторый особый метод, при помощи которого ты получишь возможность при помощи механики находить некоторые математические теоремы. Я уверен, что этот метод будет тебе ничуть не менее полезен и для доказательства самих теорем. Действительно, кое-что из того, что ранее было мною усмотрено при помощи механики, позднее было также доказано и геометрически, так как рассмотрение при помощи этого метода еще не является доказательством. Однако получить при помощи этого метода некоторое предварительное представление об исследуемом, а затем найти и само доказательство, гораздо удобнее, чем производить изыскания, ничего не зная.
…Поэтому я и решил написать об этом методе и обнародовать его, с одной стороны, чтобы не оставались пустым звуком прежние мои упоминания о нем, а с другой, поскольку я убежден, что он может принести математике немалую пользу. Я полагаю, что некоторые современные нам или будущие математики смогут при помощи указанного метода найти и другие теоремы, которые нам еще не приходили в голову».
Архимед не случайно пишет Эратосфену. Этот ученый, несмотря на свою ортодоксальность, иногда отваживался вопреки Платону пользоваться при геометрических построениях не только циркулем и линейкой. Он сам придумывал инструменты и механизмы для вычерчивания кривых линий. Эратосфен отвергал мнение Платона о том, что математика должна подымать нас ввысь, а не низводить к бренному миру. Он не придавал значения словам Платона: «При таких решениях пропадает и гибнет благо геометрии, возвращающейся назад к чувственным вещам…». Эратосфен знал, что благодаря таким настроениям учение о пространственных фигурах, о пересечениях конических тел долго игнорировалось математиками и даже не вошло в «Начала» Евклида. Ведь при помощи циркуля и линейки такие построения проводить невозможно.
Теперь мы знаем, что циркуль и линейка позволяют справиться лишь с решением задач, сводящихся к уравнениям первой и второй степеней. А пересечения объемных фигур (плоскостей с цилиндрами, конусами и шарами) приводили к задачам, сводящимся к уравнениям третьей и более высоких степеней.