Читаем Код. Тайный язык информатики полностью

При записи больших десятичных чисел мы используем запятые через каждые три знака для облегчения их восприятия[11]. Например, если вы увидите число 12000000, вероятно, придется подсчитать количество цифр, однако, увидев число 12,000,000, вы сразу поймете, что оно означает 12 миллионов.

Двоичные числа очень быстро могут стать весьма длинными. Например, 12 миллионов в двоичной системе счисления записывается так: 101101110001101100000000. Чтобы такое число было легче воспринимать, каждые четыре двоичных разряда обычно разделяются пробелами (1011 0111 0001 1011 0000 0000). Далее в этой книге мы рассмотрим более сжатый способ записи двоичных чисел.

Сведя систему счисления к двоичным цифрам 0 и 1, мы достигли предела. Далее упрощать некуда. Более того, двоичная система соединяет арифметику с электричеством. В предыдущих главах мы рассматривали переключатели, провода, лампочки и реле, и любой из этих объектов может отображать двоичные цифры 0 и 1.

Провод может представлять собой двоичную цифру. Если по нему идет ток, то двоичная цифра равна 1, если нет — 0.

Переключатель может представлять собой двоичную цифру. Если переключатель включен, или замкнут, то двоичная цифра равна 1, если переключатель выключен, или разомкнут, то двоичная цифра — 0.

Лампочка может представлять собой двоичную цифру. Если лампочка горит, то двоичная цифра равна 1, если нет — 0.

Телеграфное реле может представлять собой двоичную цифру. Если реле замкнуто, то двоичная цифра равна 1, если разомкнуто — 0.

Двоичные цифры имеют непосредственное отношение к компьютерам.

Примерно в 1948 году американский математик Джон Тьюки (род. 1915)[12] осознал, что в будущем словосочетание «двоичная цифра» (binary digit), вероятно, приобретет гораздо большее значение — по мере распространения компьютеров. Он решил создать новое, более короткое слово, чтобы заменить эти громоздкие пять слогов, и рассматривал такие варианты, как bigit и binit, но остановился на коротком, простом, элегантном и просто замечательном слове bit («бит»).

<p>Глава 9</p><p>За битом бит</p>

Когда в 1973 году Тони Орландо в своей песне попросил, чтобы любимая «повязала желтую ленточку вокруг старого дуба», он не сопроводил свою просьбу ни подробными объяснениями, ни долгими рассуждениями. Никаких «если», «и», «но». Несмотря на сложные чувства и эмоции, сопровождавшие ситуацию, что разворачивалась в реальной жизни и легла в основу песни, мужчине хотелось получить простой ответ: «да» или «нет». Он знал, что, если на старом дубе появится желтая ленточка, это будет означать: «Да, хотя ты и наворотил дел и провел три года в тюрьме, я все равно хочу, чтобы ты вернулся и мы жили под одной крышей». А отсутствие желтой ленточки скажет: «Даже не думай здесь останавливаться».

Здесь есть две четкие взаимоисключающие альтернативы. Тони Орландо не пел: «Повяжи половину желтой ленточки, если тебе нужно время на размышление» или «Повяжи голубую ленточку, если больше не любишь меня, но по-прежнему хочешь остаться друзьями». Нет, он все сформулировал очень просто.

Не менее информативно, нежели отсутствие или наличие желтой ленточки (разве что не столь поэтично), сработал бы дорожный знак, поставленный во дворе, например «Путь открыт» или «Въезд запрещен». Или табличка на двери «Закрыто» или «Открыто». Или фонарик на окне — включенный или выключенный.

Если вам нужно просто сказать «да» или «нет», то способов хватает. Для этого не надо произносить ни одной фразы, слова, даже буквы. Необходим всего один бит, то есть 0 или 1.

Как мы узнали в предыдущих главах, десятеричная система, которой мы пользуемся при подсчете предметов, на самом деле ничем не примечательна. Ясно, что мы пользуемся системой с основанием 10, так как у нас 10 пальцев на руках. Мы могли бы с тем же успехом использовать систему с основанием 8 (будь мы мультяшками), 4 (будь мы омарами) или даже 2 (если бы мы были дельфинами).

Однако двоичная система счисления все-таки особенная. Дело в том, что это простейшая возможная система счисления. В двоичной системе всего две цифры: 0 и 1. Если нам нужно что-то проще двоичной системы, придется избавиться от 1, и останется только 0. Имея всего лишь 0, ничего не сделаешь.

Слово «бит» — сокращение от английского выражения binary digit («двоичная цифра»). Пожалуй, это одно из симпатичнейших слов в компьютерной терминологии. В английском языке у слова bit есть и общеупотребительное значение — «кусочек, небольшая часть», и это значение нам отлично подходит, поскольку один бит — двоичная цифра, мельчайший фрагмент информации.

Перейти на страницу:

Похожие книги