Загрязнение атмосферы самым тесным образом связано с развитием энергетики. Прогресс цивилизации немыслим без непрерывного и весьма быстрого роста выработки энергии. Однако с увеличением производства энергии растет и масса сжигаемого топлива. А поскольку все виды топлива содержат серу (уголь — в среднем около 2 %, нефть — 2,5 %, газ — 0,05 %), неуклонно усиливается загрязнение атмосферы двуокисью серы. Около одной пятой всех выбросов двуокиси серы приходится на производство цветных металлов. Двуокись серы в атмосфере вступает в химические реакции и в виде серной или сернистой кислот либо сульфатов переносится на сотни и тысячи километров от источника загрязнения. Выпадая на поверхность земли, соединения серы оказывают пагубное влияние на животный и растительный мир, ускоряют коррозию материалов, разрушают сооружения из мрамора и известняка, закисляют почвы и водоемы. К аналогичным последствиям приводит и загрязнение атмосферы окислами азота.
Перечень примеров нетрудно продолжить, упомянув, например, о тяжелых металлах, способных накапливаться в почве, воде и растениях, передаваться по пищевым цепям, оказывая токсическое воздействие на живые организмы, о влиянии на азотный, хлорный и водородный циклы в атмосфере, запылении атмосферы, загрязнении почвы и водоемов пестицидами и канцерогенами и т. д.
Биосфера обладает значительной устойчивостью по отношению к загрязняющим примесям, основанной на естественной способности различных компонентов природной среды к самоочищению. Вместе с тем способность биосферы «усваивать» без заметного ущерба различного рода примеси небезгранична, так что перед человечеством стоит сложная проблема сохранения чистоты окружающей среды. Изучение этой проблемы в целом требует, прежде всего, интеграции исследований в различных областях науки, порой довольно далеких друг от друга. Это, в частности, биология и география, экономика и медицина, химия и юриспруденция, физика атмосферы и разработка безотходных технологий, математика и космические исследования и т. д.
Комплексность и многогранность проблемы, необратимость «натурных» экологических экспериментов, масштабность народного хозяйства неизбежно ведут к тому, что зачастую единственно возможным способом решения многих конкретных природоохранных задач становится математическое моделирование.
Как же строятся математические модели, используемые для решения таких задач? Чтобы понять это, вспомним хорошо знакомую всем картину — шлейф дыма над трубой тепловой электростанции. Этот шлейф состоит из мелких частичек различных примесей, которые переносятся воздушными потоками на большие расстояния. Отсюда сразу следует, что одним из первых шагов в моделировании процесса переноса примесей должно быть определение таких потоков. Они описываются системой нелинейных дифференциальных уравнений гидротермодинамики атмосферы, выражающих в математической форме известные физические законы сохранения массы, энергии, количества движения системы, а также основные термодинамические соотношения.
Расчет распределений метеорологических параметров на основе уравнений термодинамики — чрезвычайно сложная задача, решение которой немыслимо без привлечения современных методов вычислительной математики и мощных ЭВМ. Сегодня уровень знаний в этой области позволяет прогнозировать изменения распределений различных характеристик, определяющих метеорологические условия в том или ином районе, на сроки порядка недели. Имея в виду практическую значимость борьбы с загрязнениями окружающей среды отходами промышленных предприятий и необходимость оценивать долгосрочные последствия таких загрязнений, в настоящее время следует считать весьма актуальными исследования распространения загрязнений с учетом данных о крупномасштабных атмосферных процессах, влияющих на климат. Выбор такого масштаба позволяет использовать основные характеристики динамики атмосферы за текущий период (скажем, за последние десять лет) и проанализировать воздействие загрязнений на биосферу в предположении, что за последующий (сравнимый по продолжительности) промежуток времени существенных изменений климата не произойдет. Но для этих исследований необходимы специализированные базы данных по климатическим характеристикам атмосферы и соответствующее математическое обеспечение. Этот подход применим только для тех слоев атмосферы, влияние земной поверхности на которые пренебрежимо мало. В нижней же ее части так называемом пограничном слое (толщиной до 2 км), где сосредоточены все антропогенные источники загрязнений, динамический режим атмосферы приходится определять исходя из глобальных климатических характеристик свободной атмосферы с учетом различных метеорологических процессов среднего масштаба. Детерминирующие этот режим процессы, протекающие в планетарном пограничном слое, описываются, как отмечалось, уравнениями гидротермодинамики атмосферы, которые решаются на мощных ЭВМ.