Читаем Кибернетика или управление и связь в животном и машине полностью

           (3.32)

Более того,

           (3.33)

[c.136]

где сумма берется по всем разбиениям величин 1, …, n на пары, а произведение — по парам в каждом разбиении. Выражение

           (3.34)

изображает очень важный ансамбль временных рядов по переменной t, зависящих от некоторого параметра распределения . Доказанное нами равносильно утверждению, что все моменты и, следовательно, все статистические параметры этого распределения зависят от функции

           (3.35)

представляющей собой известную в статистике автокорреляционную функцию со сдвигом . Таким образом, распределение функции f(t, ) имеет те же статистики, что и функция f(t+t1, ); и действительно, можно доказать, что если

 ,          (3.36)

то преобразование параметра в Г сохраняет меру. Другими словами, наш временной ряд f(t, ) находится в статистическом равновесии.

Далее, если мы рассмотрим среднее значение для

           (3.37)

то оно состоит в точности из членов выражения

           (3.38)

[c.137]

и из конечного числа членов, имеющих множителями степени выражения

 ,          (3.39)

если последнее стремится к нулю при ->, то (3.38) будет пределом выражения (3.37). Другими словами, распределения функций f(t, ) и f(t+, ) становятся асимптотически независимыми, когда ->. Более общим, но совершенно аналогичным рассуждением можно показать, что одновременное распределение функций f(t1, ), …, f(tn, ) и функций f(+s1, ), …, f(+sm, ) стремится к совместному распределению первого и второго множества, когда ->. Другими словами, если F[f (t, )] — любой ограниченный измеримый функционал, т. е. величина, зависящая от всего распределения значений функции f(t, ) от t, то для него должно выполняться условие

 .          (3.40)

Если F[f (t, )] инвариантен при сдвиге по t и принимает только значения 0 или 1, то

 ,          (3.41)

т. е. группа преобразований f(t, ) в f(t+, ) метрически транзитивна. Отсюда следует, что если F[f (t, )] — любой интегрируемый функционал от f как функции от t, то по эргодической теореме

           (3.42)

[c.138]

для всех значений , исключая множество нулевой меры. Таким образом, мы почти всегда можем определить любой статистический параметр такого временного ряда (и даже любого счетного множества статистических параметров) из прошлой истории одного только параметра. В самом деле, если для такого временного ряда мы знаем

           (3.43)

то мы знаем Ф(t) почти во всех случаях и располагаем полным статистическим знанием о временном ряде.

Некоторые величины, зависящие от временного ряда такого рода, обладают интересными свойствами. В частности, интересно знать среднее значение величины

           (3.44)

Формально мы можем записать его в виде

 

 

 .          (3.45)

Весьма интересная задача — попытаться построить возможно более общий временной ряд из простых рядов броунова движения. При таких построениях, как подсказывает пример рядов Фурье, разложения типа (3.44) составляют удобные строительные блоки. В частности, исследуем временные ряды специального вида:

           (3.46)

[c.139]

Предположим, что нам известна функция (, ), а также выражение (3.46). Тогда при t1t2 находим, как в (3.45),

           (3.47)

Умножив на

 

и положив s(t2t1)=i, получим при t2->t1

           (3.48)

Примем K(t1, ) за новую независимую переменную и, решая относительно , получим

           (3.49)

Тогда выражение (3.48) будет иметь вид

           (3.50)

Отсюда преобразованием Фурье можно найти

           (3.51)

как функцию от , коль скоро лежит между K(t1, a) и K(t1, b). Интегрируя эту функцию по , найдем

           (3.52)

[c.140]

как функцию от K(t1, ) и t1. Иначе говоря, существует известная функция F (u, v), такая, что

           (3.53)

Поскольку левая часть этого равенства не зависит от t1, мы можем обозначить ее через G и положить

           (3.54)

Здесь F — известная функция, и ее можно обратить относительно первого аргумента, положив

 ,          (3.55)

где H — также известная функция. Отсюда

           (3.56)

Тогда выражение

           (3.57)

будет известной функцией и

           (3.58)

откуда

 ,          (3.59)

или

 .          (3.60)

Входящую в это выражение константу можно определить из соотношения

 ,          (3.61)

или

 .          (3.62)

Очевидно, что если а конечно, то безразлично, какое значение мы ему дадим; в самом деле, наш оператор не [c.141] изменится от прибавления одной и той же величины ко всем значениям . Поэтому можно взять а=0. Таким образом, мы определили как функцию от G и, следовательно, G — как функцию от . Из (3.55) следует, что мы тем самым определили K(t, ). Для завершения расчетов нам нужно только найти b. Это число можно определить сравнением выражений

           (3.63)

и

 .          (3.64)

Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука