Но это еще не все. В предыдущей главе проводилась другая теорема эргодического характера, доказанная фон Нейманом: коль скоро некоторая система переходит в себя при данной группе сохраняющих меру преобразований, как в случае нашего уравнения (3.15), то, за исключением множества элементов нулевой вероятности, каждый элемент системы входит в подмножество (быть может, равное всему множеству), которое: 1) переходит в себя при тех же преобразованиях; 2) имеет меру, определенную на нем самом и также инвариантную при этих преобразованиях; 3) замечательно тем, что любая часть этого подмножества с мерой, сохраняемой данной группой преобразований, имеет либо максимальную меру всего подмножества, либо меру 0. Отбросив все элементы, не принадлежащие к такому подмножеству, и используя для него надлежащую меру, мы найдем, что временное среднее (3.16) почти во всех случаях равно среднему значению функционала Ф[f(t)] по всему пространству функций f(t), т. е. так называемому фазовому среднему. Стало быть, в случае такого ансамбля функции f(t), за исключением множества случаев нулевой вероятности, мы можем найти среднее значение любого статистического параметра ансамбля по записи любого временного ряда ансамбля, применяя временное среднее вместо фазового. Более того, этим путем можно найти одновременно любое счетное множество таких параметров ансамбля, и нам нужно знать лишь прошлое одного, почти какого угодно временного ряда ансамбля. Другими словами, если дана вся прошлая история — вплоть до настоящего момента — временного ряда, принадлежащего к ансамблю в статистическом равновесии, то мы можем вычислить с вероятной ошибкой, равной нулю, все множество статистических параметров ансамбля, к которому принадлежит ряд. До сих пор мы установили это для отдельного временного ряда, но сказанное справедливо также для многомерных временных рядов, где вместо одной изменяющейся величины мы имеем несколько одновременно изменяющихся величин.
Теперь мы можем рассмотреть различные задачи, относящиеся к временным рядам. Ограничимся случаями, в которых все прошлое временного ряда может быть задано счетным множеством величин. Например, для [c.129] довольно широкого класса функций f(t) (— < t < ) функция f(t) полностью определена, если известно множество величин
,
(n=0, 1, 2, …) (3.17)
Пусть теперь А — некоторая функция от будущих значений t, т. е. от значений аргумента, больших нуля. Тогда мы можем определить совместное распределение величин (a0, a1, …, аn, A) из прошлого одного, почти любого временного ряда, если множество функций f берется в самом узком возможном смысле. В частности, если даны все a0, …, аn, то мы можем найти распределение функции А. Здесь мы прибегаем к известной теореме Никодима об условных вероятностях. Та же теорема гарантирует нам, что это распределение при весьма общих условиях стремится к пределу, когда n->, и этот предел даст нам полные сведения относительно распределения любой будущей величины. Мы можем таким же образом определить по известному прошлому совместное распределение значений любого множества будущих величин или любого множества величин, зависящих от прошлого и от будущего. Если теперь нам дана некоторая подходящая интерпретация «наилучшего значения» статистического параметра или множества статистических параметров — например, в смысле математического ожидания, или медианы, или моды, — то мы можем вычислить это значение из известного распределения и получить предсказание, удовлетворяющее любому желательному критерию надежности предсказания. Мы можем численно оценить качество предсказания, применяя какой угодно статистический показатель качества: среднеквадратическую ошибку, максимальную ошибку, среднюю абсолютную ошибку и т. д. Мы можем вычислить количество информации о любом статистическом параметре или множестве статистических параметров, которое дает нам фиксация прошлого. Можно даже вычислить количество информации о всем будущем после определенного момента, даваемое нам знанием прошлого. Правда, если этот момент — настоящее, то, вообще говоря, мы будем знать о нем из прошлого, и наше знание настоящего будет содержать бесконечно много информации. [c.130]