Читаем Характер Физических Законов полностью

Как ни удивительно, но я могу доказать, что если силы направлены к Солнцу, то в равные промежутки времени описываются равные площади. Я попытаюсь доказать, что эти два закона эквивалентны, и тогда вам станут ясными не только формулировки этих двух утверждений. Вы убедитесь, что эти два закона связаны, что путем размышления можно перейти от одного к другому и что математика - это организованные рассуждения. Тогда вы оцените красоту взаимоотношений между этими двумя законами. Итак, докажем, что если сила направлена к Солнцу, то за равное время описываются равные площади.

Рассмотрим Солнце и планету (рис. 13) и вообразим себе, что в определенный момент времени планета находится в положении 1.Она движется так, что через секунду, скажем, очутится в положении 2.Если бы Солнце не действовало на планету, то, согласно галилееву принципу инерции, планета продолжала бы двигаться по прямой. Тогда по истечении такого же промежутка времени, следующей секунды, двигаясь по прямой линии и пройдя такое же расстояние, планета очутилась бы в положении 3.Сначала мы докажем, что в равные промежутки времени описываются равные площади, если силы нет. Напомню, что площадь треугольника равна половине произведения основания на высоту, а высота - это расстояние по вертикали от вершины до основания треугольника. Если треугольник - тупоугольный (рис. 14), то высота - AD, а основание - ВС.Теперь сравним площади, которые описывались бы при движении планеты, если бы Солнце на нее не действовало (рис. 13).

Вы помните, что два расстояния 1-2и 2-3равны. Вопрос в том, равны ли две площади. Рассмотрим треугольник, образованный Солнцем ( S) и двумя точками 1и 2. Какова его площадь? Она равна основанию 1-2, умноженному на половину перпендикуляра, опущенного на основание из точки S. Теперь - другой треугольник, образованный точками 2, 3и S.Его площадь равна основанию 2-3, умноженному на половину перпендикуляра, опущенного из точки S.У этих двух треугольников одна и та же высота и, как я уже сказал, равные основания. Поэтому они имеют одинаковую площадь. Пока все идет прекрасно. Если бы со стороны Солнца не действовало никаких сил, то за равные промежутки времени описывались бы равные площади. Но Солнце действует на планету. На отрезке 1-2-3Солнце притягивает планету, причем направление силы притяжения постепенно меняется. Чтобы получить хорошее приближение, возьмем среднее положение 2и скажем, что весь эффект притяжения на отрезке 1-3сводится к отклонению планеты на некоторое расстояние в направлении линии 2- S(рис. 15).

Это означает, что тело двигалось по линии 1-2и продолжало бы двигаться по ней, если бы не было силы, но притяжение Солнца заставляет тело двигаться по линии 2-S.Таким образом, движение тела на следующем отрезке складывается из того, как планета двигалась бы самостоятельно, и изменения, которое произошло под действием Солнца. Поэтому планета попадает не в положение 3,а в положение 4.

Теперь мы сравним площади треугольников 23Sи 24Sи докажем, что они равны. У них общее основание S-2.Одинаковы ли у них высоты? Да, потому что треугольники заключены между параллельными линиями. Расстояние от точки 4до линии 5-2равно расстоянию от точки 3до линии 5-2(продолженной). Значит, площадь у треугольника S24такая же, как у S23.Раньше я доказал, что треугольники S12и S23равны по площади. Отсюда ясно, что S12=S24.Таким образом, при движении планеты по орбите площади, описываемые за первую и за вторую секунду, равны. Значит, путем рассуждений мы нашли связь между тем фактом, что сила направлена к Солнцу, и тем фактом, что площади равны. Не правда ли, остроумно? Я позаимствовал вывод прямо у Ньютона. Все это содержится в его "Principia": и схема, и доказательство. Только цифры другие, потому что он пользовался римскими цифрами, а я - арабскими.

Все доказательства в книге Ньютона были геометрическими. Сегодня мы строим доказательства по-другому. Мы доказываем аналитически, при помощи символов. Чтобы построить нужные треугольники, подметить равенство площадей, требуется изобретательность. Теперь мы имеем усовершенствованные методы анализа, более быстрые и эффективные. Я хочу показать вам, как это выглядит в обозначениях более современной математики, где для доказательства нужно лишь записать несколько символов.

Мы будем говорить о быстроте изменения площади и обозначим эту величину через А'.При повороте радиуса площадь изменяется, и быстрота ее изменения - это составляющая скорости, перпендикулярная радиусу, умноженная на радиус. Иначе говоря, это расстояние по радиусу, умноженное на скорость, т. е. на быстроту изменения расстояния:

A = r x r'

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука