В данном случае мы имеем дело, несомненно, с инобытием производной и с инобытием в его субстанциальной положенности. И вот спрашивается: как перейти от такой статически–инобытийной положенной производной к соответствующему интегралу? Это и есть предмет 1ч>й науки, входящей в состав математического анализа, которая носит название интегрирования дифференциальных уравнений.
Что такое дифференциальное уравнение и что значит—решить дифференциальное уравнение? Под дифференциальным уравнением понимается такое, которое содержит в себе дифференциалы, или производные, а решить его — значит найти такое соотношение переменных, которое бы ему удовлетворило в смысле тождества. Пусть, напр., имеется уравнение
уn+у=о,
где уn есть производная второго порядка от первообразной функции у. Решить такое уравнение—значит найти выражение для у, которое бы не содержало никаких производных, или дифференциалов, но содержало бы только х. Здесь мы не можем поступить так, как обычно при непосредственном интегрировании функции. Мы находим здесь вторую производную в сложении со значением первообразной функции и должны исходить из суммы этих двух функций. Дана, стало быть, определенная инобытийная переработка производной. Возьмем другое дифференциальное уравнение:
(x+y)dx+xdy=0.
Здесь два дифференциала даны в своеобразном переплетении с аргументом и с самой первообразной функцией, т. е. тут тоже определенная инобытийная переработка производной; и нужна специальная манипуляция, чтобы дать такую комбинацию и у, в которой бы отсутствовали всякие dx и dy. Приравнение нулю указывает на то, что инобытийная переработка производной (в данном случае — в виде двух дифференциалов) прикреплена здесь к инобытийной субстанциальности своими прочными корнями. Требуется оторваться от этой инобытийной скованности и перейти к первообразной функции, данной как чистый интеграл, несмотря ни на какую связанность производной в этом инобытии. Полученный интеграл, очевидно, будет нести на себе смысловую энергию не просто производной, но и всех ее инобытийных переплетений. Если производную мы вообще понимаем как закон реального инобытия идеальной взаимозависимости, то, очевидно, интегрирование дифференциального уравнения дает интеграл не как просто возвращение от закона реального инобытия идеальной взаимозависимости к самой этой взаимозависимости, но как возвращение к ней от тех или других модификаций и осложнений данного закона реального инобытия, от той или иной его инобытийной переплетенности с другими фактами инобытия.
Таково диалектическое место интегрирования дифференциальных уравнений.
Четкое понимание диалектического места этого вида интегрирования дает возможность найти такое же место и еще для одной дисциплины, входящей в математический анализ, которая в одном отношении даже выходит уже за пределы интегрального исчисления. Прежде чем ее назвать, формулируем еще раз достигнутый нами результат в диалектической интерпретации интегрального исчисления.
Неопределенный интеграл есть возвращение функции к самой себе из недр своего становящегося инобытия, но возвращение пока лишь чисто структурное, пока еще лишенное абсолютно–количественной определенности. Определенный интеграл есть это же возвращение, но уже не просто в смысле структуры, а еще и, кроме того, в смысле количественном; для самопроявлений находимой структуры функции положены четкие количественные пределы. Далее—какая возможна еще дальнейшая интенсификация интегральной определенности, или, другими словами, интенсификация самой интегральности? В определенном интеграле дана определенность границ, очертания. Что может диалектически противостоять этой определенности? Конечно, — определенность того, что содержится внутри границ, внутри очерченных пределов. Это и будет инобытием той определенности, которую содержит в себе определенный интеграл. Такая определенность будет, конечно, зависеть не просто от предельных точек значения аргумента х, но, главным образом, от поведения самой производной, и притом поведения не производной как производной (это имеется в виду уже во всяком неопределенном интеграле), но производной в ее переплетении с другими моментами, дающими ей ту или другую инобытийную определенность и тем самым вносящими эту определенность в недра самого интеграла. Таким образом достигается определенность интеграла внутри его собственных границ; и если определенный интеграл возникает как определенность его количественных границ, то интегрированное дифференциальное уравнение возникает как определенность интеграла внутри тех границ, с появлением которых тоже дается сам определенный интеграл. Ясно, что обе дисциплины интегрального исчисления — теория определенных интегралов и интегрирование дифференциальных уравнений — находятся в четком диалектическом взаимоотрицании.