Здесь перед нами еще раз появляется воочию тайна западноевропейского мироощущения, покинувшего идеальную действительность абсолютов и погрузившегося в непроглядную тьму становления и вечных исканий. Когда действительность мыслилась и переживалась в своей абсолютно–объективной, личностно–самостоя–тельной субстанциальности, тогда не было особенных причин уходить в становление, а были все причины пребывать в собранном и целомудренно–уравновешенном состоянии. Когда же все объективное бытие было зачеркнуто и человеческий субъект стал усиливаться в самом себе и притом из самого себя исходить все быстрее, тогда, по невозможности физически обнять бесконечную вселенную, волей–неволей пришлось устремиться в вечное искательство и расслоить спокойное обладание истиной на бесконечное и беспокойное ее достижение. Тогда и возникла непреодолимая потребность, своего рода метафизическая страсть созерцать, наблюдать, изучать и фиксировать не устойчивые структуры природы и духа, но их становящуюся стихию, не числа и вещи в их законченном стройном бытии, но числа и вещи в их бесконечно стремящемся инобытии. И так как нельзя же было настолько погрузиться в становление, чтобы потерять всякую мысль и расстаться с самой способностью расчленять, обобщать и теоретизировать, то и были созданы такие методы мысли, которые бы максимально соответствовали алогически–становящемуся бытию, и такая математика, которая, сохраняя свою точность и четкость форм, говорила бы не о стройном и законченном архитектурном целом, но о вечно рвущемся, вечно бесконечном стремлении. Производная и есть эта точная, четкая, максимально–логическая форма и метод мысли для познания всегда неточного, всегда спутанного и нечетного, максимально алогического становления и изменения. В этом вся ее тайна. И в этом ее совершенно своеобразный культурно–исторический строй; и, можно сказать, в этом — метафизическая страсть, владевшая и владеющая всеми, кто мыслит и действует инфините–зимально, кто мыслит и действует как вечно стремящийся и никогда ненасытный Фауст.
8. Дифференциал и интеграл. Вся рассмотренная нами до сих пор картина осуществлялась между величинами и у. Мы отметили три особых момента: у, Ах и у\ связывая их одним отношением[229].
Что такое и dx, этого мы сейчас можем и не разъяснять, так как это есть просто независимое переменное, a dx—то его приращение, в силу которого оно вступает в процесс становления. Так как здесь идет речь о независимых величинах, о произвольных величинах, то, очевидно, весь наш интерес должен относиться к тому, что от них зависимо, и к самой форме этой зависимости. Общее понятие нам также известно. Но уже это dy может получить более точное определение из соответствующего видоизменения вышеданной формулы производной. А именно, из нее вытекает, что
dy=y'dx.
Иначе говоря, оказывается, что о dy можно судить на основании у' и dx, т. е. приращение функции зависит от производной и от приращения аргумента. Здесь, однако, необходимо соблюдать более точный способ рассуждения и выражения, и мы получаем понятие дифференциала.
Прежде всего dx, приращение независимого переменного, стремящееся к нулю, в отличие от Ах, от приращения, вообще называется дифференциалом независимого переменного. Дифференциал аргумента есть, следовательно, бесконечно–малое его приращение. Соответственно необходимо проводить различие и между приращениями функции. Когда растет аргумент, соответственно растет и функция; и в общем случае, когда не становится вопрос о характере этих приращений, приращение функции мы обозначаем через y. Однако нас интересует именно бесконечно–малое наращение аргумента. Тогда соответственно получит специфическую окраску и приращение функции. Вот это–то приращение функции в условиях бесконечно–малого нарастающего аргумента и называется дифференциалом функции; и оно есть произведение производной на бесконечно–малое приращение аргумента (т. е. y'dx).
Но и в этом определении еще не выявляется с полной отчетливостью и выпуклостью смысловая структура дифференциала. Это определение есть ведь не что иное, как перефразировка логических моментов, входящих в понятие производной. Чтобы выявить наружу этот скрытый принцип дифференциала, представим себе процессы, дающие производную, более подробно.
Если разница
стремится к нулю и есть величина бесконечно–малая, то, обозначая ее через , получаем
Левая часть этого равенства есть общее приращение функции Ау. В правой же части f'(x)dx есть, по предыдущему, дифференциал функции, dy. Стало быть, это равенство можно переписать так:
y = dy + edx,