Да, это именно и произошло в XVII веке, когда появилось дифференциальное и интегральное исчисление, основанное как раз на анализе функций бесконечно–малых приращений независимого переменного. Математический анализ и есть это объединение учения о функциях с учением о бесконечно–малом. И тут перед нами начнут вырисовываться уже конкретные контуры этой замечательной науки.
Чтобы закрепить достигнутое нами понятие функции (на пороге исследования самого математического анализа) в виде обычной диалектической тройственности принципов, скажем так.
Переменное, взятое безотносительно и самостоятельно, переменное в себе есть независимое переменное. В математике его называют аргументом и обозначают через х.
Переменное, взятое как противоположность независимому переменному, есть зависимое переменное и обозначается через у. Этот у указывает на то, что есть какая–то зависимость между ним и х.
Но это ведь есть не только какая–то зависимость или зависимость вообще, но и конкретная форма зависимости. Иначе и быть не может. Поскольку независимое переменное есть нечто определенное, постольку, входя в объединение с зависимостью от него другого, переменного и осуществляясь в качестве именно аргумента, оно должно и абстрактную зависимость превратить· в такую же определенную и конкретную зависимость. Это–то и есть функция в собственном смысле слова и обозначается в математическом анализе так:
y=f(x)
Чтобы перейти теперь к исследованию форм объединения понятий функции и бесконечно–малого, вспомним, чтобы не сбиться, еще раз диалектическую последовательность наших мыслей. Сначала мы обследовали величину как таковую. Сюда вошло учение как о непосредственно–значащих величинах — арифметических, — так и учение об опосредствовании этих величин в форме непрерывности, прерывности и предела. Это обобщение учения о величине завершилось синтезом числа как непосредственного и как опосредствованного бытия—в форме учения о бесконечно–малом. Теперь все рассуждение о понятии функции заставило нас совсем покинуть область величин и непосредственных, и опосредствованных, и синтетических и перейти в противоположную область—отношений между величинами (а не самих величин), в область функциональных отношений.
Естественно возникает потребность объединить эти две области— величин (чисел) и функций. Тут–то и возникают понятия производной, дифференциала и интеграла.
7. Производная. Итак, отныне мы находимся всецело в области функций. Кроме того, эти функции мы пополняем содержанием, основанным на понятии бесконечно–малого. Следовательно, имеется независимое переменное, погруженное[227] в стихию бесконечно–малого становления, и имеется зависимое от него переменное, тоже, очевидно, как–то связанное с процессом бесконечно малого становления. И возникает вопрос: что же делается с этим зависимым переменным, с функцией, и какую форму принимает это отношение аргумента к функции. Когда берется функция y=f(x) то ясно, в каком отношении находятся и Пусть имеется у=х2+1: ясно, что нужно сделать с jc, чтобы получить у. Но вот ушел в становление, погрузился в бесконечный процесс стремления, ушел в бесконечную даль, и—спрашивается: что же сделается с зависимым от него у, в каком положении очутится этот становящийся к становящемуся у? С самого начала ясно, что это будет совершенно иным отношением, чем то отношение, в котором находились между собой хну, когда они покоились на месте, были просто арифметическими и алгебраическими величинами и не погружались в стихию алогического становления. Рассмотрим теперь, что же это за отношение и что тут нового по сравнению со статическим значением величин.
Итак, изменяется аргумент, изменяется в зависимости от него и функция. Употребляя традиционные обозначения математического анализа, мы получим следующее. Если x —аргумент, х будет приращением аргумента x. В зависимости от этого функция у тоже будет нарастать; обозначим приращение функции через у. Чтобы узнать, какой вид примет наращение функции, возьмем приращенную функцию f(x+x) и вычтем из нее первоначальную функцию y=f(x). Получаем: f(x+x) — f(x). Это есть то наращение, которое происходит в функции, когда получается наращение аргумента х Следовательно, если
y=f(x)
ТО
y=f(x+x) — f(x)
и, беря отношение обеих частей этого равенства к , мы получаем
Это и есть математческое выражение того нового отношения, в которое вступают и у, когда они берутся не сами по себе, не статически, но когда они погружаются в процесс становления, т. е. начинают нарастать или убывать. Это рассуждение (и обозначение) обычно еще не вполне достаточно, и требуется его существенно дополнить в одном пункте.