Читаем Хаос и структура полностью

Чем, в сущности, занималась аксиоматика и что такое аксиома? До сих пор мы попросту говорили, что числу, как суждению, соответствует аксиома. Сейчас же этот вопрос необходимо расчленить, так как иначе не будет понятен переход к умозаключению.

Именно, суждение есть, как мы знаем, положенное понятие. Положить, или утвердить, — это значит обвести границей, определить. Строго говоря, в том, что мы до сих пор называли суждением, самым важным был именно этот момент определения. Аксиома, строго говоря, и есть не столько суждение вообще, сколько именно определение. Ведь бытие и инобытие, синтезируясь в становление, дают еще более ранний синтез, т. е. предшествующий становлению и являющийся его предусловием, это сама граница, определенность, определенное бытие. Мы знаем, что тот и другой синтез могут выдвигаться по мере надобности. Так вот, говоря о суждении, дедуцируя аксиоматику, мы еще не имели нужды в том расчленении и могли говорить о суждении, не обращая особенного внимания на то, есть ли это действительно суждение вообще или это специально определение.

Суждение отличается от определения так, как становление отличается от определенного бытия. В определении суждение есть положенное понятие плюс его исчерпывающее раскрытие; т. е. иоложенность не вообще понятия, но понятия во всем его смысловом содержании. Определить что–нибудь — это и значит исчерпать все его «признаки». Для суждения же этого вовсе не требуется. Суждение дает только голую положенность понятия — независимо от раскрытия и исчерпания всего его содержания. Содержание остается нераскрытым; содержание мыслится — каким угодно становящимся, и акт нолагания нонятия[108] скользит но этому полю инобытия — как угодно далеко. Если говорится: «Иван спит», то ведь таких предицирова–ний может быть сколько угодно, и тут не ставится никаких целей исчерпания того смыслового содержания, которое зафиксировано в слове «Иван».

Итак, если иметь в виду определенность положенного понятия, то мы получаем не суждение вообще, но определение. А если иметь в виду главным образом чистую положенность понятия, то мы получаем суждение.

2. Однако и тут вполне позволительна и даже совершенно необходима еще одна дистинкция. Кроме поло–женности, адекватно исчерпывающей полагаемое, и положенное как простого факта полагания, как пустой и голой положенности, возможна еще та или другая степень наполнения[109] положенности. Положенность может давать и не голый факт полагания, и [не] все полагаемое содержание целиком, а только некоторое содержание, частичное содержание. В таком случае необходимо расчленить и соответствующие математические понятия. Голая положенность понятия (т. е. в нашем случае числа) даст, очевидно, некую модификацию числа, а так как полагание в данном диалектическом месте есть полагание становления, становящееся полагание, то голая положенность числа приведет к становлению из прежнего, полагаемого числа в новое, модифицированное число. Такой непосредственный переход от одного непосредственно значимого числа к другому непосредственно значимому числу есть действие, операция (напр., сложение, умножение, дифференцирование и пр.). Та или другая степень наполнения этих операций и новое осмысление их через операционно выставленное понятие даст уже не просто самые операции, но их предназначенность для какой–нибудь специальной числовой установки. Это и будет теорема. Таким образом, математическая операх\ия есть число, данное в своем чистом становлении из одного числа другим, или просто чистое становление одного числа другим; другими словами — это числовое понятие (число), данное как чистое становление. Математическая же теорема есть число, данное в своем заполненном становлении из одного другим, или, проще, заполненное становление одного числа другим; это числовое понятие (число), данное как заполненное[110] становление. Тогда аксиома—это число, данное [кшс] самоадекватная определенность; это числовое понятие (число), данное как определенность числа.

Ясно, что выставленные в предыдущем исследовании аксиомы суть именно определения, а не суждения вообще. Суждение более ослабленно, чем определение; оно — час–тичнее и неопределеннее. Суждению в математике соответствуют не аксиомы, а более частные положения, менее общие. Сюда относятся все математические операции со всеми соответствующими теоремами — все то, что выводится из аксиом как их более частный случай.

Но здесь возможно еще одно членение, так как ставшее становление можно взять и со всем тем, что именно участвует в этом ставшем становлении, можно взять и как голый факт ставшести. И вот тогда–то мы переходим к умозаключению и к новому математическому понятию, к функции.

§ 76. Понятие функции[111].
Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное