d) В самом деле, в этом пространстве имеет полную силу наша аксиома самотождественного различия, т. е. Гильбертовы аксиомы сочетания. Можно и нужно говорить, что через две точки тут всегда проходит прямая, и притом одна, потому что две «точки» здесь есть не что иное, как две пары точек, т. е. четыре точки, а окружность (в нашем случае — прямая) определяется уже только тремя точками. Через три точки тут всегда проходит плоскость, и притом только одна, потому что три точки дают нам целых шесть точек, которых даже слишком много для определения сферы. Однако и аксиомы подвижного покоя (Гильбертовы аксиомы порядка) также в известном смысле здесь соблюдаются (понятие «между» модифицируется на понятие «развитие двух пар точек»). Формально остаются у нас и фигуры, конструированные у нас при помощи аксиом определенности, непрерывности и конгруэнтности. Единственная новость этого пространства заключается в том, что тут нет параллельных прямых, что все прямые суть замкнутые кривые, что все они пересекают друг друга уже на конечном расстоянии.
И эта новая аксиома параллельности накладывает свою неизгладимую печать и на все предыдущие аксиомы, хотя формально, т. е. в той абстрактной, до–выразительной форме, как они были выведены раньше, они и остаются в полной силе.
Сферическая сеть является в полном смысле слова символом пространства Римана, выражающим его структуру в максимально четкой форме. Она содержит в себе все особенности символа вообще, и прежде всего отождествление идеального и реального. Уже самая обыкновенная проективная геометрия, вводящая в свое рассмотрение бесконечно удаленные элементы, но не отличающая их от конечных, снимает различие идеального и реального. Это остается и в геометрии Римана, которая есть, как, правда, и всякая другая геометрия, не больше чем специальный вид проективной геометрии. В идеальном бытие и инобытие абсолютно тождественны, как, правда, и различны. В реальном же это самотождественное различие должно быть пространственно положено. А это значит, что все прямые такого пространства замкнуты. Тайна эллиптического пространства заключается в выразительном вездеприсутствии идеального, в таком тождестве идеально–отвлеченной фигуры и ее пространственного инобытия, где уже не различимо ни идеальное, ни реальное. Вот почему тут нет параллельных, и вот почему кривизна такого пространства положительная. В этом пространстве, куда бы я ни двигался, я, описавши известную замкнутую линию, возвращаюсь опять к той же исходной точке. При этом я могу двигаться вперед или назад, вверх или вниз, результат один и тот же. Наконец, если я совсем не двигаюсь, это не значит, что меня нет в другом месте. Я в это же время нахожусь и в другом месте, и притом — во всяком месте, как равно, впрочем, и двигаюсь по всем местам, достигая одни и проходя другие. Тайна пространства Римана, повторяясь, есть тайна подвижного вездеприсутствия идеальных форм, это пространственный символ идеальных фигур или, лучше, пространство как символ.
е) Этот символ можно несколько видоизменить. Будем мыслить себе не связку окружностей, а просто связку прямых. На этом символе Клейн прекрасно иллюстрирует все свойства эллиптического пространства. Именно, пусть точкой у нас будет вся прямая связки. Тогда под новой прямой придется понимать плоскость связки и под новой плоскостью—всю связку. Но что будет в этих случаях отрезком? Если мы поместим плоскость, пересекающую нашу связку, то каждая прямая связки и точка этой плоскости будут связаны взаимно однозначным соответствием. Спрашивается: на основании чего можно будет судить о расстоянии двух точек такой плоскости? Конечно, на основании угла между соответствующими двумя прямыми связки. Следовательно, отрезок на эллиптической плоскости нужно понимать как некий угол и, в частности, равенство отрезков есть равенство углов, а полупрямая, т. е. прямая, неопределенно продолженная в одну сторону, есть не что иное, как прямой угол. Если же мы захотели представить себе угол на эллиптической плоскости, то, поскольку для этого необходимо пересечение двух прямых, а под прямой мы условились понимать плоскость связки, угол этот на плоскости есть, очевидно, двугранный угол. А треугольник — в таком случае — окажется трехгранным углом связки.