И все-таки что же такого революционного в этих технологиях по сравнению с предыдущими прорывами в информационных технологиях, такими как изобретение печатного станка? Печать стала поистине значительным технологическим открытием, существенно повлиявшим на все стороны общественной жизни, хотя и произвела значительно бо́льшие перемены в Европе раннего нового времени, чем до этого в Китае, где ее изобрели гораздо раньше. Однако новые информационные технологии нашего времени имеют еще большее историческое значение, потому что они порождены новой технологической парадигмой на основе трех главных отличительных особенностей:
1) их способность к самовозрастанию мощности обработки данных в категориях объема, сложности и скорости;
2) их способность к рекомбинации;
3) многообразие их применения.
Я подробно поговорю об этих особенностях, составляющих саму суть новой, информационной парадигмы, – сначала о каждой из двух фундаментальных технологических областей (микроэлектронике и генной инженерии) по отдельности, а потом об их взаимодействии.
Революция в микроэлектронике коснулась микросхем, компьютеров, телекоммуникации и сетей. Разработка программного обеспечения критична для управления системой в целом, но мощь вычислений зависит от конструкции интегральных схем. Эти технологии обеспечивают невероятный рост способности обработки информации, не только по объему информации, но и по сложности операций и скорости вычислений. И все же как можно измерить «существенный рост» по сравнению с предыдущими технологиями обработки информации? Как узнать, что перед нами революция, обеспечившая беспрецедентный скачок вычислительной мощности?
На первом уровне ответ чисто эмпирический. Возьмем любую единицу измерения обработки информации, будь то биты, число контуров обратной связи или скорость, и за последние тридцать лет мощность вычислений покажет устойчивый экспоненциальный рост, при столь же резком падении затрат на операцию. Рискну выдвинуть теорию, что дело здесь не только в количестве, но и в качестве: данные технологии обладают способностью увеличивать вычислительную мощь, развиваясь на основе знаний, полученных в ходе применения самой технологии. Это рискованная теория, так как вычислительная мощность может упереться в физические ограничения интегральных микросхем. Тем не менее вплоть до настоящего момента каждый апокалиптический прогноз в этой области отодвигался в будущее новыми прорывами в производстве. Продолжающиеся исследования новых материалов (включая биологические, с химическими механизмами обработки информации в ДНК) могут привести к существенному расширению плотности интеграции. Параллельные вычисления, а также растущая интеграция программного кода в аппаратные средства посредством нанотехнологий могут оказаться дополнительными источниками самовозрастающей мощности обработки информации.
Более формально эту теорию можно изложить так: за первые двадцать пять лет революции в информационных технологиях мы стали свидетелями самовоспроизводящейся растущей способности технологий к обработке информации; скорее всего, новые волны уже готовящихся инноваций снимут существующие ограничения; и, что критично, когда (и если) нынешние технологии достигнут пределов своей вычислительной мощности, возникнет новая технологическая парадигма, формы и технологии которой сегодня невозможно представить, если не считать футурологических догадок научно-фантастической литературы.