Читаем Кентерберийские головоломки полностью

Порой люди пытаются озадачить нас небольшими искажениями смысла слов. Один человек задал мне недавно старую, известную задачу: «Мальчик ходит вокруг шеста, на котором сидит обезьяна; но обезьяна все время крутится на шесте так, что мордочка ее всегда обращена в сторону, противоположную той, куда смотрит мальчик. Обходит ли при этом мальчик вокруг обезьяны?» Я ответил, что если бы он дал мне определение понятия «ходить вокруг», то я дал бы ему ответ. Он, конечно, отказался. Тогда я сказал, что если понимать слова в их обычном, прямом значении, то безусловно мальчик обходит вокруг обезьяны. Как и ожидалось, он стал утверждать, что это не так, ибо под «хождением вокруг» понимал такое перемещение, при котором мы видим предмет со всех сторон. На что я возразил, что тогда слепой не может вообще обойти вокруг чего-либо. Тогда он подправил свое определение, сказав, что в действительности видеть все стороны нет нужды, но вы должны так двигаться, чтобы, глядя все время на предмет, могли бы увидеть его со всех сторон. На что я сказал, что в таком случае вы никогда не сможете обойти вокруг человека, сидящего в ящике! И т. д. Предмет этой дискуссии удивительно глуп, и если с самого начала принять простое и правильное определение того, что значит «ходить вокруг», то не останется вовсе никакой головоломки и вы избегнете утомительных и зачастую жарких споров.

Поняв условия задачи, посмотрите, нельзя ли их упростить, ибо на этом пути можно избавиться от множества затруднений. Всегда озадачивает классический вопрос о человеке, который, указав на портрет, сказал: «Сестер и братьев нет у меня, но отец этого человека – сын моего отца». Каково родственное отношение говорившего к человеку на портрете? Задача сразу же упрощается, если сказать, что «сын моего отца» означает «я сам» или «мой брат». Но поскольку у говорившего не было братьев, то вполне очевидно, что это значит «я сам». Таким образом, утверждение означает всего лишь: «Отец этого человека – я сам», то есть на портрете изображен сын говорившего. И все же люди порой размышляют над этим вопросом целый час!

Во многих областях царства Головоломок есть еще не раскрытые тайны. Давайте рассмотрим несколько примеров из мира чисел – небольшие штучки, понять которые способен ребенок, хотя величайшим умам не удалось их решить. Каждый, наверное, слышал выражение «трудно квадрировать круг», хотя далеко не все имеют представление о том, что это означает. Если у вас есть круг заданного диаметра и вы хотите найти сторону квадрата в точности той же площади, то вы имеете дело с задачей о квадратуре круга. Так вот, решить ее совершенно точно невозможно (хотя мы можем найти ответ, достаточно точный для практических целей), ибо не существует рационального числа, равного отношению диаметра к окружности. Но лишь недавно доказано, что эта задача не разрешима, ибо одно дело безуспешно пытаться решить задачу и совсем другое – доказать, что она не имеет решения. Только невежественные любители головоломок могут сегодня тратить время, пытаясь квадрировать круг.

Точно так же мы не можем выразить диагональ квадрата через его сторону с помощью рационального числа. Если у вас есть квадратное окно со стороной ровно в один фут, то существует расстояние от одного его угла до другого, хотя вам не удастся выразить его рациональным числом. Простодушный человек, быть может, предположит, что мы можем взять диагональ длиной в один фут, а затем уже построить наш квадрат. И все же нам это не удастся; более того, мы не сможем выразить сторону квадрата рациональным числом, каким бы способом ни стремились к этому.

Все мои читатели знают, что такое магический квадрат. Числа от 1 до 9 можно разместить в квадрате, содержащем девять клеточек так, чтобы сумма вдоль любой вертикали, горизонтали или диагонали равнялась 15. Это очень просто; и существует только одно решение данной головоломки, ибо расположения, которые получаются из данного с помощью поворотов и зеркальных отражений, мы не рассматриваем как новые. Далее, если мы хотим составить магический квадрат из 16 чисел от 1 до 16, то здесь существует 880 различных способов, опять же без учета поворотов и зеркальных отражений. Окончательно это было доказано в последние годы. Но сколько магических квадратов удается образовать из 25 чисел, от 1 до 25, никому не ведомо, и нам еще придется развить наши знания в некоторых направлениях, прежде чем мы можем надеяться решить эту головоломку. Но удивительно, что удается построить ровно 174 240 таких квадратов при единственном дополнительном ограничении: чтобы внутренний квадрат из девяти клеточек сам был магическим. Я показал, каким образом это число можно удвоить, преобразуя каждое решение с внутренним магическим квадратом в решение без такого квадрата.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное