Например, если мы выпишем число, состоящее из девятнадцати единиц, 1 111 111 111 111 111 111, а затем попросим найти число (отличное от него самого и от 1), которое делит его без остатка, то условия задачи окажутся совсем простыни, тогда как сама она ужасно трудна. Никто в мире не знает, существует ли такой делитель данного числа или нет, Если вы найдете хоть один делитель, то тем самым преуспеете в том, чего никто до вас не сумел сделать.
Число, составленное из семнадцати единиц, 11 111 111 111 111 111, обладает лишь двумя делителями – 2071723 и 5 363 222 357, а найти их весьма сложно. Единственное число, составленное из единиц, про которое доподлинно известно, что у него нет делителей, – это 11. Такое число, разумеется, называют простым.
Всегда, когда мы что-либо делаем, существуют правильный путь и путь ошибочный, это особенно справедливо при решении головоломок. Здесь ошибочный путь заключается в бесцельных хаотических попытках в надежде случайно напасть на верное решение – процесс, который обычно приводит к тому, что мы попадаем в искусно расставленную для нас ловушку.
Впрочем, случайно может оказаться, что головоломка принадлежит к тому типу, когда решение очень трудно получить чисто логическим путем, и гораздо вероятнее его найти с помощью метода проб и ошибок. Но в большинстве случаев лишь первый метод доставляет нам истинное удовольствие.
Когда мы садимся за головоломку, то первое, в чем необходимо убедиться, насколько возможно, – это в том, что мы поняли ее условия. Ибо если не понимаешь того, что нужно сделать, вряд ли преуспеешь в нем. Все мы знаем историю, как человека спросили: «Если одна селедка с половиной стоят три пенса, то сколько стоят полдюжины селедок?» После нескольких неудачных попыток дать ответ он сдался, а когда ему объяснили, что полдюжины селедок стоят двенадцать пенсов, то есть шиллинг, то он, как бы извиняясь, воскликнул: «Ах, селедки! А я-то думал – речь идет о треске!»
Порой требуется большая внимательность, чем может показаться с первого взгляда, дабы сформулировать условия головоломки таким образом, чтобы они одновременно были как ясными и точными, так и не слишком многословными, иначе пропадет интерес их решать. Однажды я, помнится, предложил головоломку, где что-то требовалось сделать с помощью «наименьшего числа прямых». Один человек, который был либо слишком умен, либо слишком глуп (я так и не понял, что же было на самом деле), заявил, что он решил эту головоломку с помощью всего одной прямой, потому что, как он выразился: «Остальные прямые я позаботился искривить!» Кто бы мог подумать о такой уловке?
Далее, если вы задаете головоломку о переправах через реку, в которой некое количество людей требуется переправить на другой берег, тогда как в лодке помещается лишь данное небольшое число пассажиров, то как только человек, который будет решать вашу головоломку, почувствует, что ему не удается с нею справиться, он немедленно призовет на помощь веревку, позволяющую перетянуть лодку с одного берега на другой. Вы скажете, что веревку использовать запрещено, тогда в ответ на это он попытается использовать течение реки. Однажды я был уверен, что совершенно исключил подобные трюки в одной головоломке такого типа, но все же нашелся хитроумный читатель, который заставил людей перебираться вплавь! Разумеется, некоторое число головоломок решается именно с помощью таких трюков, и если без этих трюков решения вообще не окажется, то это считается вполне законным. Мы должны напрячь все наши критические способности, чтобы определить, содержит ли наша головоломка подобную ловушку или нет; но здесь никогда не следует слишком поспешно принимать решение. Трюк в условиях задачи – это последний способ победить ее будущего читателя.