Читаем Кентерберийские головоломки полностью

Например, если мы выпишем число, состоящее из девятнадцати единиц, 1 111 111 111 111 111 111, а затем попросим найти число (отличное от него самого и от 1), которое делит его без остатка, то условия задачи окажутся совсем простыни, тогда как сама она ужасно трудна. Никто в мире не знает, существует ли такой делитель данного числа или нет, Если вы найдете хоть один делитель, то тем самым преуспеете в том, чего никто до вас не сумел сделать.

Число, составленное из семнадцати единиц, 11 111 111 111 111 111, обладает лишь двумя делителями – 2071723 и 5 363 222 357, а найти их весьма сложно. Единственное число, составленное из единиц, про которое доподлинно известно, что у него нет делителей, – это 11. Такое число, разумеется, называют простым.

Всегда, когда мы что-либо делаем, существуют правильный путь и путь ошибочный, это особенно справедливо при решении головоломок. Здесь ошибочный путь заключается в бесцельных хаотических попытках в надежде случайно напасть на верное решение – процесс, который обычно приводит к тому, что мы попадаем в искусно расставленную для нас ловушку.

Впрочем, случайно может оказаться, что головоломка принадлежит к тому типу, когда решение очень трудно получить чисто логическим путем, и гораздо вероятнее его найти с помощью метода проб и ошибок. Но в большинстве случаев лишь первый метод доставляет нам истинное удовольствие.

Когда мы садимся за головоломку, то первое, в чем необходимо убедиться, насколько возможно, – это в том, что мы поняли ее условия. Ибо если не понимаешь того, что нужно сделать, вряд ли преуспеешь в нем. Все мы знаем историю, как человека спросили: «Если одна селедка с половиной стоят три пенса, то сколько стоят полдюжины селедок?» После нескольких неудачных попыток дать ответ он сдался, а когда ему объяснили, что полдюжины селедок стоят двенадцать пенсов, то есть шиллинг, то он, как бы извиняясь, воскликнул: «Ах, селедки! А я-то думал – речь идет о треске!»

Порой требуется большая внимательность, чем может показаться с первого взгляда, дабы сформулировать условия головоломки таким образом, чтобы они одновременно были как ясными и точными, так и не слишком многословными, иначе пропадет интерес их решать. Однажды я, помнится, предложил головоломку, где что-то требовалось сделать с помощью «наименьшего числа прямых». Один человек, который был либо слишком умен, либо слишком глуп (я так и не понял, что же было на самом деле), заявил, что он решил эту головоломку с помощью всего одной прямой, потому что, как он выразился: «Остальные прямые я позаботился искривить!» Кто бы мог подумать о такой уловке?

Далее, если вы задаете головоломку о переправах через реку, в которой некое количество людей требуется переправить на другой берег, тогда как в лодке помещается лишь данное небольшое число пассажиров, то как только человек, который будет решать вашу головоломку, почувствует, что ему не удается с нею справиться, он немедленно призовет на помощь веревку, позволяющую перетянуть лодку с одного берега на другой. Вы скажете, что веревку использовать запрещено, тогда в ответ на это он попытается использовать течение реки. Однажды я был уверен, что совершенно исключил подобные трюки в одной головоломке такого типа, но все же нашелся хитроумный читатель, который заставил людей перебираться вплавь! Разумеется, некоторое число головоломок решается именно с помощью таких трюков, и если без этих трюков решения вообще не окажется, то это считается вполне законным. Мы должны напрячь все наши критические способности, чтобы определить, содержит ли наша головоломка подобную ловушку или нет; но здесь никогда не следует слишком поспешно принимать решение. Трюк в условиях задачи – это последний способ победить ее будущего читателя.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное