Читаем Капля полностью

Вот теперь можно понять механизм пульсаций. Начнем со случая, когда железная игла касается ртути в точке на контуре капли. В момент соприкосновения иглы с по­верхностью ртути — сопри­косновения, а не внедрения!— ртутная капля уменьшает диаметр, и контакт между нею и иглой нарушается. После этого величина поверх­ностной энергии должна воз­вратиться к значению, кото­рое было до соприкосно­вения иглы с каплей, т. е. должна понизиться, и радиус ртутной капли возрастает. Это значит, что капля сопри­коснется с иглой и все нач­нется снова: сокращение кап­ли, нарушение контакта, рас­ширение капли, восстановле­ние контакта и т. д.

 

Биение ртутного сердца. Железная игла касается макушки капли

Интересен механизм воз­никновения пульсаций в том случае, когда игла прикаса­ется к поверхности ртути не на контуре капли, а в ее центре, в макушке. Казалось бы, наступающее при этом повышение поверхностного натяжения должно сопро­вождаться поднятием макуш­ки и образованием ненарушающегося контакта с иглой. Если контакт ненарушающийся — пульсаций быть не может. В действительности, однако, происходит иное. Макушка капли чуть напол­зает на иглу, а затем под дей­ствием силы тяжести отрыва­ется от нее. Этот первый им­пульс дает толчок колебаниям. Капля раскачивается, «серд­це» начинает пульсировать.

Любопытная деталь: при переносе иглы с контура кап­ли на ее макушку частота пульсаций увеличивается. Это совершенно аналогично повышению частоты колебаний ги­тарной струны, если пальцем прижать ее к грифу посреди­не между точками закрепления. В случае капли — игла, а в случае струны — палец, создавая узел, уменьшают длину волны колебаний и, следовательно, повышают их частоту.

Необходимо подчеркнуть, что ртутное сердце отнюдь не вечный двигатель. Во время его работы расходуется энергия, выделяющаяся при химической реакции между ртутью, железом, соляной кислотой и двухромовокислым калием. В этой реакции расходуются исходные ком­поненты, и она прекратится, _ когда, скажем, будет съеден железный гвоздь. В «невечности» ртутного сердца можно легко убедиться, взяв вместо гвоздя тонкую проволочку. Скоро контакт между каплей и проволочкой перестанет воспроизводиться, так как кончик проволоки будет съеден. Чтобы «сердце» опять за­работало, надо проволочку придвинуть к капле: явно —  не вечный двигатель!

Задумали мы снять кар­диограмму ртутного сердца. Много сведений из нее не из­ влечешь, разве только определишь количество пульсаций в секунду, а их можно просто посчитать, наблюдая за кап­лей, или для верности воспользоваться кадрами кинофиль­ма. И все-таки снять кардиограмму любопытно. У нашего лабораторного «сердца» диаметр капли ртути 4 см, игла касается его контура, и пульсирует оно с частотой 120 ударов в минуту.

Вначале решили воспользоваться работающим сердцем как прерывателем электрической цепи, регистрируя мо­менты включения и выключения с помощью самопишуще го прибора. От этой мысли, однако, отказались, так как любое электрическое вмешательство в ртутное сердце неизбежно исказит его пульсации. Поступили по-иному. Тоненький луч света направили на зеркальную поверх­ность пульсирующей капли, а отраженный от нее мечу­щийся луч подавал сигнал на самописец, который и записал кардиограмму. На кардиограмме видна последовательность чередующихся максимумов и минимумов, четких, строгих, периодических, без перебоев, на зависть иному человеческому сердцу.

Капля, движущаяся в кристалле

Как капля жидкости могла оказаться внутри твердого кристалла? С ответа на этот вопрос и начнем очерк.

Начнем издалека, с момента зарождения кристалла. Представим себе, что будущий кристалл — пусть для оп­ределенности это будет кристалл какой-нибудь соли — должен зародиться и вырасти из ее водного раствора вследствие выпадения избыточной соли. Скажем, темпе­ратура раствора понизилась - и некоторое количество соли оказалось избыточным. Оно и является строительным ма­териалом для кристалла. Вначале появится микроскопи­ческий кристаллик — зародыш, а затем он будет подрас­тать по мере осаждения на нем атомов соли из раствора. В реальных условиях роста, где-то в земных недрах, обстоятельства могут сложиться так, что растущий кри­сталл случайно захватит в свой объем капельку мате­ринского раствора. Захватит и будет продолжать расти. И через некоторое время эта капелька окажется в объеме кристалла, вдали от поверхности: ведь любая точка в объе­ме кристалла некогда была на его поверхности.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука