Существуют естествоиспытатели, которые пытаются увидеть явление в целом, посмотреть на него с неожиданной стороны. Они легко и точно улавливают связи нового явления с известными, ставят эксперимент так хитро и неожиданно, что поиск заканчивается очень убедительным доказательством факта существования явления. Это очень ценная и нужная категория исследователей, но в их лабораториях устанавливаются факты лишь качественно, выяснение точных характеристик явления их мало заботит. Милликен относится к принципиально иной категории исследователей. Я очень внимательно читал его книгу — подробный отчет об экспериментах с заряженными каплями, и меня не покидало чувство восхищения перед великолепным экспериментальным мастерством, скрупулезным в такой мере, что иному оно может показаться выражением не столько оправданной тщательности, сколько болезненной придирчивости. Его предшественники, по существу, в своих опытах могли определять лишь статистически среднюю величину зарядов, поскольку они не отличали каплю, образовавшуюся на однозарядном ионе, от той, которая сформировалась на ионе многозарядном, так как экспериментировали с облаком — ансамблем капель различных и по величине и по заряду. Милликен решил экспериментировать с одной каплей, подолгу удерживая ее между пластинами конденсатора.
Вначале и Милликен экспериментировал с водяными каплями. Все, что с ними может происходить, он подробнейшим образом исследовал. Для надежной обработки результатов измерений необходимо точно знать размер капель, и Милликен его определял по скорости падения капли в воздухе. Между экспериментально найденной скоростью и значением радиуса — расчет по формуле Стокса. Возникает сомнение: быть может, эта формула ненадежна в применении к микроскопическим каплям? Милликен ставит сотни опытов с целью внести нужные поправки в формулу Стокса и достигает необходимой точности в определении радиуса. Вот одно из значений радиуса капли, изучавшейся Милликеном: 0,000197 см.
Капля может в процессе измерения испаряться, терять массу. Ставится такой опыт. Одна заряженная капля уравновешивается полем и останавливается между пластинами конденсатора. Со временем капля начинает подниматься вверх. Это значит, что, частично испарившись, она стала легче, и сила, создаваемая электрическим полем, начинает превосходить силу тяжести. В опыте поле уменьшается ровно настолько, чтобы капля опять стала неподвижной. Измерив необходимое для этого уменьшение напряженности поля, Милликен определяет скорость испарения капли и учитывает ее при обработке результатов измерений.
Во время опыта капля может изменить свой заряд. Ставятся специальные опыты для исследования этой возможности. Ведется длительное наблюдение за движущейся каплей и устанавливается, что в случайные моменты времени капля скачкообразно меняет скорость своего падения,— это естественно объясняется потерей или приобретением заряда. Становится ясным, что скачкообразные изменения скорости оказываются в точности такими, какими они должны быть, если заряд может принимать лишь значения, кратные некоторому минимальному. Наблюдаются капли, несущие самое различное число элементарных зарядов — от 1 до 150. Так как точность измерения ограничена, то при большем числе зарядов изменение их числа наблюдается с меньшей достоверностью. Однако, как пишет Милликен, «когда число их не превышает пятидесяти, то ошибка тут так же невозможна, как и при подсчете собственных пальцев». Эти опыты — безусловное основание для Милликена утверждать, что электрический заряд «обладает резко выраженным зернистым строением».
Милликен оказался тем счастливым естествоиспытателем, который сумел надежно доказать «зернистость» электрического заряда и определить
ЖИВЫЕ КАПЛИ
Столяру Джузеппе попалось под руку полено, которое пищало человеческим голосом.
Капля живого серебра
На языке многих народов ртуть именуется живым серебром, видимо, за блеск и за способность легко перекатываться по твердой поверхности.
В этом очерке — рассказ об опыте, в котором «живость» ртути самоочевидна. Этот опыт в нашей лаборатории проделывали много раз и наблюдали за ним и невооруженным глазом и с помощью кинокамеры. Ставится опыт так. В плоскодонной стеклянной кювете — капелька ртути и неподалеку от нее кристаллик двухромовокислого калия. Затем в кювету наливается такое количество слабого раствора соляной кислоты в воде, чтобы и капля и кристаллик были покрыты раствором. Надо позаботиться