Как мы прогнозировали (и надеялись), данные от ботов оказались очень похожи на данные, получаемые от их одушевленных аналогов, и во многом даже лучше. Большинство веб-страниц оказывались идентичными в разных версиях браузеров, и даже если находилось различие, инженер быстро просматривал его и понимал, есть ли что-то серьезное.
Машины теперь могли автоматически подтвердить отсутствие регрессионных багов. Это маленький шаг для машины, но огромный для всего мира тестировщиков — им больше не нужно пробираться через тернии не самых интересных страниц. Тесты теперь можно прогонять за минуты, а не за несколько дней, как раньше. Их можно проводить ежедневно, а не еженедельно. У тестировщиков наконец освободились руки и время и стало возможным заняться багами посложнее.
Если оставить версию браузера неизменной, а менять при этом только данные одного сайта, мы получим средство для тестирования сайтов, а не только браузера. Такую же штуку можно провернуть с анализом одного URL-адреса по всем браузерам и всем сериям тестов. То есть у веб-разработчика появилась возможность просмотреть все изменения, происходящие с его сайтом: он создает новую сборку, дает ботам ее обойти и получает таблицу результатов, где показаны все изменения. Быстро, безо всякого ручного тестирования, веб-разработчик определяет, какие изменения из обнаруженных не заслуживают внимания, а какие похожи на регрессионный баг и достойны занесения в багтрекинговую систему, причем сразу с информацией о браузерах, версии приложения и конкретных элементах HTML, где он водится.
А как насчет веб-сайтов, управляемых данными? Возьмем, например, сайты YouTube и CNN — их контент огромен и изменяется со временем. Не запутаются ли боты? Они справятся, если будут предупреждены о нормальных колебаниях данных этого сайта. Например, если в нескольких последовательных сериях изменился только текст статьи и картинки, то боты посчитают изменения уместными для данного сайта. Если показатели выйдут за рамки (допустим, при нарушении IFRAME или при переходе сайта на другой макет), боты могут подать сигнал тревоги и сообщить об этом веб-разработчику, чтобы он определил, нормально ли новое состояние или пора заводить соответствующий баг. Пример небольшого шума можно увидеть на рис. 3.32: на сайте CNET есть реклама, которая во время проверки
Рис. 3.32.
появилась справа, а не слева. Такой шум считается небольшим и будет либо проигнорирован ботом, либо помечен как несущественный человеком, который моментально заметит, что это всего лишь реклама.
А что происходит дальше со всеми этими сигналами? Должен ли тестировщик или разработчик просматривать их все? На самом деле нет, мы уже ведем эксперименты по прямой передаче информации о различиях краудсорс-тестировщикам,[53] чтобы они быстро ее проверяли. Мы хотим оградить наши основные команды разработки и тестирования от лишнего шума. Мы просим внешних помощников посмотреть две версии веб-страницы и обнаруженные различия. Они отмечают, баг это или несущественное отклонение.
Как мы получаем данные от сообщества? Гениальное — просто: мы построили инфраструктуру, которая транслирует необработанные данные ботов на обычную страницу голосования для тестировщиков. Разумеется, мы сравнивали работу краудсорсеров со стандартными методами ручного рецензирования. Схема была следующая: боты пометили только шесть URL-адресов как требующие дополнительной проверки. Помеченные URL-адреса получили тестировщики из сообщества. Имея в арсенале данные ботов и инструменты визуализации различий, краудсорсеры определяли, ошибка ли это, в среднем за 18 секунд. А проверка всех 150 URL-адресов на регрессию ручными методами заняла около трех дней. Тестировщики из сообщества успешно определили все шесть различий как несущественные. Результаты работы краудсорсеров и ручной затратной формы проверки совпали! А зачем платить больше?
Звучит здорово! Правда, этот метод подходит только для статических версий веб-страниц. А как насчет интерактивных элементов — раскрывающихся меню, тестовых полей и кнопок? Мы ведем работу по решению этой проблемы, можно сказать, мы открыли киностудию: боты автоматически взаимодействуют с интересующими нас частями веб-страницы и снимают на каждом шаге кадр DOM. Затем «фильмы» каждой серии сравниваются покадрово с помощью той же технологии анализа различий.