Сравните этот подход со стратегией Селби, который выбирал числа случайным образом с помощью функции Quic Pick. В этом случае существует небольшая вероятность 0,3 % вообще потерять все призы категории «Пять угаданных чисел из шести». Более того, вероятность выиграть только один приз этой категории составляет 2 %, два приза – 6 %, три приза – 11 % и четыре приза – 15 %. Гарантированная прибыльность стратегии Деннистона уступает место риску. Безусловно, у этого риска есть свое преимущество: команда Селби может выиграть более шести таких призов с вероятностью 32 %, что невозможно в случае выбора лотерейных билетов по системе Деннистона. Билеты Селби, билеты Деннистона и любые другие билеты имеют одну и ту же ожидаемую ценность, однако метод Деннистона защищает игрока от воли случая. Чтобы играть в лотерею, ничем не рискуя, недостаточно играть сотнями тысяч билетов; необходимо играть
Является ли эта стратегия причиной того, что члены группы Random Strategies тратили так много времени на заполнение сотен тысяч лотерейных билетов вручную? Использовали ли они систему Деннистона, разработанную в духе чистой математики, ради того чтобы выкачать деньги из лотереи без всякого риска для себя? Здесь мои изыскания зашли в тупик. Мне удалось связаться с Юраном Ли, но он не знал наверняка, как выбирались эти билеты; он сказал только, что у них в общежитии был человек, к которому они обращались за помощью и который занимался всеми вопросами, связанными с алгоритмом выбора чисел. Я не уверен, использовал ли этот человек систему Деннистона или что-то в этом роде. Но если нет, то думаю, ему следовало бы так поступить.
Так и быть, можете играть в лотерею
К настоящему моменту мы всеми возможными способами обосновали вывод о том, что решение играть в лотерею почти всегда является неудачным с точки зрения ожидаемого количества денег, а также что в тех редких случаях, когда ожидаемая денежная стоимость лотерейного билета превышает его цену, необходимо очень тщательно подходить к вопросу извлечения максимальной пользы из тех билетов, которые вы покупаете.
Учитывая все это, экономистам с математическим складом мышления придется объяснить один неудобный факт – тот самый, что более двух сотен лет назад озадачил Адама Смита. Лотереи очень и очень популярны. Дело в том, что лотерея – совсем не та ситуация, которую изучал Эллсберг. Когда люди сталкиваются с проблемой принятия решений при неизвестных обстоятельствах, которые невозможно установить. Крошечный шанс выиграть в лотерею выставлен на всеобщее обозрение. Закон, гласящий, что люди склонны принимать решения, которые в той или иной степени приносят им максимальную пользу, является одним из столпов экономики и действительно позволяет моделировать поведение в самых разных областях, от ведения бизнеса до выбора спутника жизни. Но это не касается лотереи. Для определенной категории экономистов такое иррациональное поведение в такой же мере неприемлемо, как для пифагорейцев была неприемлемой иррациональная длина гипотенузы. Подобное не вписывается в их модель происходящего – и все же оно имеет место быть.
Экономисты мыслят более гибко, чем пифагорейцы. Вместо того чтобы в ярости топить гонцов с плохими вестями, они адаптируют свои модели к реальности. Одну известную интерпретацию предложили наши старые друзья Милтон Фридман и Леонард Сэвидж, которые предположили, что игроки в лотерею придерживаются волнообразной кривой полезности, отображающей тот факт, что люди думают о богатстве в категориях классов, а не в количественных величинах. Если вы, будучи представителем среднего класса, тратите на лотерею пять долларов в неделю и проигрываете, такое решение обходится вам в небольшую сумму денег, но не меняет ваш социальный статус: несмотря на потерю денег, отрицательная полезность почти близка к нулю. Но, если вы выиграете, это переведет вас в другую социальную группу. Вы можете считать это моделью «смертного одра»: когда вы окажетесь при смерти, будет ли вас беспокоить мысль, что вы умираете с несколько меньшим количеством денег – и все потому, что любили играть в лотерею? По всей вероятности, нет. Будет ли для вас иметь значение тот факт, что в тридцать пять лет вы ушли на пенсию и остаток жизни провели где-то на Карибских островах, занимаясь подводным плаваньем, – и все потому, что выиграли большой приз в лотерею? Да, будет.